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This paper presents the possibility of using very thin Low Gain Avalanche Diodes (LGAD) (25−
50µm thick) as tracking detector at future hadron colliders, where particle fluence will be above
1 ·1016 neq/cm2. In the present design, silicon sensors at the High-Luminosity LHC will be 100-
200 µm thick, generating, before irradiation, signals of 1-2 fC. This contribution shows how very
thin LGAD can provide signals of the same magnitude via the interplay of gain in the gain layer
and gain in the bulk up to fluences above 1 ·1016 neq/cm2: up to fluences of 0.1-0.3·1016 neq/cm2,
thin LGADs maintain a gain of ∼ 5-10 while at higher fluences the increased bias voltage will
trigger the onset of multiplication in the bulk, providing the same gain as previously obtained in
the gain layer. Key to this idea is the possibility of a reliable, high-density LGAD design able to
hold large bias voltages (∼ 500V).
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1. Properties of Silicon sensors exposed to fluences above 1 ·1015 neq/cm2

In the past several years, a lot of effort has been devoted to the study of the properties of
Silicon sensors irradiated with fluences up to 1 − 2 · 1015 neq/cm2. The extrapolation of these
results to fluences above 1 · 1015 neq/cm2 depicted a very difficult situation: very high leakage
currents, strong decline of charge collection efficiency, and a steep increase of the bulk doping.
However, during the extensive experimental campaigns aimed at the development of the Silicon
trackers to be operated at HL-LHC, it was found that a simple linear extrapolation does not predict
accurately the situation above 1− 5 · 1015 neq/cm2: charge collection does not decrease due to
trapping linearly with fluence and it remains still fairly high (above 50%), detectors can hold very
high biases (almost 1000V) allowing for charge multiplication to compensate charge trapping, the
bulk doping does not increase linearly with fluence, and the leakage current increase is reduced.
Overall, several preliminary measurements are suggesting that damage in Silicon sensors does not
increase linearly for fluences above ∼ 5 · 1015 neq/cm2, however, sensors that are thicker than 50-
100 microns still suffer from high leakage current, distortion of the electric field, charge trapping,
and the impossibility of reaching full depletion. A comprehensive review on the effect of radiation
damage in Silicon can be found in [1].

From a phenomenological point of view, the non linearity of the damage with fluence is ex-
pected: at high enough fluences, impinging particles will start hitting areas of Silicon that have
already been hit previously and the resulting damage will happen on already damaged Silicon. The
geometrical distribution of the damage created by a particle in Silicon is fairly complex: Figure 1
[2, 3] shows two examples of the effects of a 1 MeV neutron. An interacting neutron creates several
clusters of damaged Silicon, with interstitial (I) or vacancy states (V); each cluster extends several
tens of Angstroms, much more than the Silicon lattice constant (5.4 Å).

Figure 1: Spatial distribution of the damaged produced by a 1 MeV neutron in Silicon.

The complete calculation of the probability of clusters overlap as a function of fluence is
beyond the scope of this contribution, however, a simpler 2-dimensional approach can be used to
gain insights into this problem. The probability for an impinging particle on one cm2 of Silicon to
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hit a location not already hit by any of the preceding particles can be calculated in the following
manner, Figure 2 left side:

• A particle hit on the Silicon surface is identified by a square , ao, of a given area, for example
1 Å2.

• For a particle, the probability of imping on a specific square is phit =
10−16cm2

cm2 = 10−16.

• Consequently, the probability of not-impinging on a specific square is pmiss = 1− phit =

(1.−10−16)

• The probability for a particle to hit a square ao missed by all n previous particles is pn
miss =

(pmiss)
n = (1.−10−16)n.

The resulting trend is shown in Figure 2 right side: for ao = 1 Å2, after a fluence of 1 ·1016 neq/cm2

the probability of hitting an empty square is reduced to 30%, indicating that saturation effects are
likely. As shown in the plot, the probability of hitting an empty square as a function of fluence
follows an exponential trend with parameter ao since the events follow a Poisson distribution.

Figure 2: Probability as a function of particle fluence of hitting a square of 1 Å2 not previously hit by any
other particle. As the probability decreases, saturation effects in Silicon damage are more likely.

According to this simple model, the transition from linear to saturation happens in one decade
of fluence. Measurements have shown that up to fluences ∼ 1−3 ·1015 neq/cm2 the damage is linear
therefore the exploration of the properties of irradiated Silicon in the decade 3−30 ·1015 neq/cm2

is of major importance to shed light on this topic.

2. Thin Silicon sensors

Even though saturation effects might lead to better than foreseen properties of Silicon sensors
at fluences above 5 ·1015 neq/cm2, it is clear that the decrease of the carriers lifetime, the increase
of leakage current and that of the bulk doping will severely impact operation. One way to minimize
these negative effects is the use of thin p-bulk (25 - 50 µm) Silicon sensors:
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• High leakage current is responsible for noise increase and the distortion of the electric field
due to the trapping of the charge carriers, forming the so-called "double junction". Thin
sensors minimize this problem: as shown in [1], the first 50 µm of Silicon bulk near the n-p
junction maintains a linear electric field up to 1 ·1016 neq/cm2,

• The increase of bulk doping with fluence raises steeply the depletion voltage in 200-300 µm
thick Silicon sensors: after 1 · 1015 neq/cm2 the depletion voltage in a 300 (200) µm thick
Silicon sensor is V ∼ 1400V (620V). Conversely, thin sensors can be depleted even after
very high fluences: Figure 3 shows the depletion voltage after a fluence of 1 ·1017 neq/cm2

as a function of sensor thickness assuming a standard ge f f = 0.02 or a saturated ge f f = 0.01
value of the acceptor creation coefficient (for additional comments on the meaning of ge f f

see eq.4.1 and the discussion in chapter 5 of [8]). It is very important for reliable operation

Figure 3: Depletion voltage after a fluence of 1 ·1017 neq/cm2 as a function of sensor thickness assuming a
standard g = 0.02 or a saturated g = 0.01 value of the acceptor creation coefficient.

that the voltage of full depletion can be reached since it assure always a constant active
volume and a field high enough to provide good carriers velocity everywhere in the volume

• In thin sensors, even if the carriers lifetimes becomes very short, charge collection efficiency
remains fairly high: assuming an electron (hole) lifetime of 0.2 ns (0.15 ns) as predicted to
be after a fluence of ∼ 1 ·1016 neq/cm2, charge collection efficiency in a 50 µm thick sensor
is still almost 80%.

Regardless of the advantages listed above, thin sensors (20 - 30 µm) are not suitable for opera-
tion since the signal is too small: the most probable value of charge released by a minimum ionizing
particle is of the order of 0.3 fC while the newest ASICs developed by the RD53 collaboration1,
see for example [4], require at least 1 fC of charge to detect a hit. For this reason, thin sensors
can only be employed if they have an internal mechanism of charge multiplication. As shown in
Figure 4, 3D sensors manage to break the proportionality between drift path and signal amplitude

1http://rd53.web.cern.ch/rd53/
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by drifting the charge carriers perpendicularly to the direction of charge deposition: internal gain
in thin sensors manages to achieve the same results by multiplying the charge carriers.

Figure 4: Thin sensors with internal gain and 3D sensors manage to break the proportionality between drift
path and signal amplitude.

3. Electric field configurations able to achieve internal gain

The internal gain in Silicon detectors, often called impact ionization, happens when the electric
field reaches values around 250-300 kV/cm [5]. The gain as a function of position x is calculated
as the path integral of the charges drifting towards the electrodes:

N(x) =
∫

N(o)eα(E)xdx, (3.1)

where α(E)−1 is the mean path needed by a charge carrier to acquire enough velocity to
create an additional e/h pair. This distance decreases exponentially with the electric field E [5].
In a simplified picture, charge multiplication happens if the electrons drift length is longer than
α(E)−1: lower values of E require very long drift distances while high values of E field (250-
300kV/cm) require ∼ 100 nm. As shown in Figure 5, there are 3 methods to implement a high
enough field to induce charge multiplication:

• (I) If the bulk has high resistivity, the field is mostly due to the applied bias. In this cir-
cumstance, the electric field is almost flat so it is either always or never near the critical field
(shown in the picture as a dashed line). Sensors in this configuration tend to be very unstable,
as a small variation of the bias value or of the temperature can stop or ignite a breakdown.

• (II) The electric field in sensors with a low resistivity bulk has a slope proportional to the bulk
doping: multiplication happens near the junction since it is where the field is higher. The
problem with this configuration is that the electric field increases constantly approaching the
junction, therefore it can easily generates an avalanche at its highest point. For this reason,
stable gain is achieved only if the slope of the field is not too steep.

• (III) In the Low Gain Avalanche Diode [6] design (LGAD), the gain layer doping produces a
sudden increase of the E field at a distance of 1-2 microns from the junction. The total field,
due to the sum of the gain layer and the bias components, is near the critical field only for a
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short distance, it is flat, and it is controlled by the bias value. The combination of these three
factors allows having a controlled gain. This configuration offers the most control over the
gain as the field is flat, and near the critical field only for a short length.

Figure 5: The picture shows the electric fields of 3 different sensors: high resistivity, low resistivity and
Low gain avalanche diode. Multiplication happens when the field is near the critical value (depicted as a
dashed line). The sensors are n-in-p. The tones of red indicate the level of acceptor doping in both bulk and
gain layer.

The above examples identify the main conditions for stable gain: (i) the field should be near
the critical value only for a short distance (less than a few microns), (ii) the field near the critical
value should be as flat as possible, and (iii) the field value should be controlled by bias and not by
bulk doping. For these reasons, only the LGAD design can provide the internal gain necessary for
the stable operation of thin sensors.

4. Irradiation effects

Irradiation modifies the doping profile of the bulk and of the gain layer by progressively deac-
tivating the initial acceptors (in the bulk and in the gain layer) and by creating acceptor-like defects
due to deep traps. These effects are described by equation (4.1) [5, 7]

NA(φ) = ge f f φ +NA(0)e−cφ , (4.1)

where ge f f = 0.02 [cm−1], φ the irradiation fluence [ cm−2], (NA(0)) (NA(φ)) the accceptor
density [cm−3] before irradiation (after fluence φ ). the initial (after a fluence φ ) acceptor density
[cm−3], and c [cm2] is a constant that depends on the initial acceptor concentration and on the type
of irradiation. The first term of equation (4.1) accounts for acceptor creation by deep traps while
the second term for the initial acceptor removal mechanism. As a result of increasing fluence, the
gain layer becomes less and less doped while the bulk doping increases: this evolution decreases
the gain in the gain layer and, at high enough fluence and bias voltage, might generate gain in the
bulk.

One key question to be addressed in future R&D is the dependence of the gain mechanism on
irradiation. In un-irradiated high-resistivity sensors, the charge carriers mean free path λ between
successive scatterings is determined by the interactions of the carriers with the lattice phonons
while the scattering on impurities is a sub-leading effect. Under this condition, at high enough E
field α(E)−1 becomes shorter than λ and the process of impact ionization can take place, see the
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first two left sketches of Figure 6. Irradiation increases the number of scattering centers and at high
enough fluence the distance λ will be controlled by the scattering on defects: when this will happen
the gain will be quenched, and it would only be recovered by increasing the E field as shown in
the two right sketches of Figure 6. Current studies have proven that up to fluences 3 ·1015 neq/cm2

impact ionization is not quenched, indicating that the scattering on phonons is still the limiting
factor.

Figure 6: Interplay of the scattering length λ and the mean path needed for impact ionization α(E)−1.

5. Design of the sensors able to work at fluences 5−10 ·1016 neq/cm2

The combination of the results obtained in Section 3 with the irradiation effects explained in
Section 4 suggest that a thin LGAD device will be able to deliver enough charge up to fluences of
5−10 ·1016 neq/cm2: at low fluence the gain is due to the presence of a gain layer while at higher
fluence the gain is due to multiplication in the bulk, see Figure 7. Multiplication in the bulk is
driven by the bulk doping and by the bias voltage, and it will be present up to fluences where the
mean free path λ will be too short to allow α(E)−1 < λ . Since up to fluences of ∼ 3 ·1015 neq/cm2

impact ionization is not quenched, that the damage might not increase linearly, with fluence, and
that the E field in thin sensors can be very high, the possibilities of having gain at fluences in the
interval 5−10 ·1016 neq/cm2 looks possible.

It is important that the sensors can be over-depleted even at the highest fluence so that the field
remains as flat as possible when it approaches the critical value and does not lead to uncontrollable
breakdown. According to Figure 3 a thickness of about 20-25 microns would be ideal as it can
still be depleted even after a fluence of 1 ·1017 neq/cm2 and the initial charge is large enough that a
moderate value of gain, gain = 5 - 10, will be sufficient to guarantee the delivery of at least 1 fC of
charge at every fluence.

An important aspect in the design of Silicon sensors is that the fill factor, defined as the active
area divided by the sensor area, should be as close to 100% as possible. In the LGAD traditional
design, Figure 8 left part, the gain is terminated using junction termination extensions (JTE) and
the n-doped pixels are isolated from each other using p-stops: these structures use at least 30µm,
strongly decreasing the fill factor. To circumvent this problem, it has been proposed [9] to use
shallow trenches to terminate the gain and isolate the pads, Figure 8 right part. If successful, this
design change will be able to dramatically improve the fill factor opening up the possibility of
designing very small LGAD (50x50 µm2) pixels.
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Figure 7: The picture shows the electric fields of a thin LGAD when (i) new , (ii) after a fluence of 1 ·
1015 neq/cm2 and (III) after 1 ·1016 neq/cm2. When new, the field is mostly due to the gain layer, while with
irradiation the bulk becomes more doped and the gain layer disappears. As a consequence of this change,
the multiplications moves from the gain layer to the bulk. The sensors are n-in-p, the tones of red indicated
the level of acceptor doping both in the bulk and the gain layer.

Figure 8: Left side: In the current LGAD design, the gain is terminated using junction termination exten-
sions (JTE) and the n-doped pixels are isolated from each other using p-stops. This design creates a dead
area between pads. In order to eliminate the dead area it has been proposed to use trenches to terminate the
gain and isolate the pads.

6. Conclusion

This contribution proposes the use of thin LGAD as tracking sensors for very high fluences.
Thin devices minimize irradiation effects, greatly reducing the effect of charge trapping, high leak-
age current, and increasing bulk doping. Thin LGADs boost the initially small signal using the
internal gain: the interplay of charge multiplication in the gain layer and in the bulk will assure
the deliver of more than 1fC of charge even after fluences of 5−10 ·1016 neq/cm2. An innovative
design for the interpad area based on shallow trenches will allow the production of LGAD with
100% fill factor. A summary sketch of the proposed design is shown in Figure 9.
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Figure 9: Sketch of the proposed sensor for particle tracking at very high fluences.
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