
P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Building a scalable, interactive and event-driven
computing platform in multi-cloud environments
with dCache

Michael Schuh∗

DESY
E-mail: michael.schuh@desy.de

Patrick Fuhrmann†

DESY
E-mail: patrick.fuhrmann@desy.de

Paul Millar
DESY, dCache
E-mail: paul.millar@desy.de

Tigran Mkrtchyan
DESY, dCache
E-mail: tigran.mkrtchyan@desy.de

This paper about the dCache storage platform and use cases for one of its latest features - storage
events is based on three talks given at the ISGC 2019, the International Symposium on Grids
and Clouds in Taipei, Taiwan from April 1-5 2019. Building on a deployment in a multi-cloud
environment, where dCache acts as a write-through and read-through cache with one single, dis-
tributed namespace, we introduce the reader to dCache storage events in both tracks: message
queuing and server sent events. Turning to broader use case scenarios in cloud native appli-
cations, we address the role of dCache in the EOSCpilot project Photon and Neutron Science
Demonstrator, a deployment of Function-as-a-Service platforms for both, interactive and event-
driven scientific computing.

International Symposium on Grids & Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

∗Speaker.
†Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:michael.schuh@desy.de
mailto:patrick.fuhrmann@desy.de
mailto:paul.millar@desy.de
mailto:tigran.mkrtchyan@desy.de


P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

1. Introduction

This paper about the dCache storage platform in event-driven and interactive use-cases in
multi cloud environments is organized in three sections, which reflect the topics of three talks
given by DESY IT scientists at the ISGC 2019, the International Symposium on Grids and Clouds
in Taipei, Taiwan from April 1-5 2019. Firstly, we present the role of dCache as a write-through
and read-through cache with one single, distributed namespace in federated cloud environments.
In the second section, we introduce the reader to dCache storage events in both tracks: message
queuing and server sent events. We address how dynamic processing of storage events provides
users with additional capabilities for monitoring and automation. Turning to broader use case
scenarios in cloud native applications in the third section, we present findings from the EOSCpilot
project Photon and Neutron Science Demonstrator about interactive and event-driven applications
of functions as-a-service in scientific computing. We conclude that dCache storage events enable
users to execute codes fully automated in response to incoming data, e.g. data written by sensors or
an experiment, or data staged from tape. Finally, we conclude with some comments on the current
state of interoperability of the demonstrated scientific software with cloud native environments and
discuss potential future work.

2. dCache in a multi-cloud environment

For over a decade commercial providers offer their computer resources as public clouds. With
a couple of clicks one can build and run a full data center without any local infrastructure. While
this is a very attractive approach, high costs and/or legal aspects force sites to run their own infras-
tructure, often as a private cloud, though. However, such local resources may be insufficient if user
demand cannot be foreseen in advance.

One option to cope with such peak loads, known as cloud bursting [1], is to build a hybrid
cloud by combining the local instance with external resources or public clouds. Although this
model works, it has downsides. Despite the ease with which additional CPU resources can be
integrated into local infrastructure, the data is typically only available from the primary site. Due
to network latency, jobs running on external CPU resources may be less efficient than jobs with
local data access. Moreover, remote data access may produce greater network usage, especially
when the same data is requested from multiple jobs. This inefficient network access can increase
overall operational costs or result in network bandwidth starvation.

For years, dCache.ORG has provided robust software, called dCache, that is used at more than
80 universities and research institutes around the world, allowing these sites to provide reliable
storage services for the WLCG experiments and many other scientific communities. Thanks to
its microservice-like architecture, dCache scales horizontally with increasing number of nodes and
can provide the desired storage space with the required data throughput. As all dCache components
communicate with each other by sending messages over the TCP connection, a single instance of
dCache can be as small as a single computer, including a Raspberry-Pi, and as big as thousands of
hosts providing tenths of petabytes of data spread over multiple geographical locations [2].

One of the key aspects of dCache’s design is the separation of files’ data and metadata such as
name, size and checksum. By using a unique identifier for each file that is independent from the

1



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

file’s name and location, dCache splits a file’s metadata and data. This unique identifier is used by
dCache internally when a file is addressed. By using this additional level of indirection, new data
servers can be added and removed dynamically within existing deployments. To reduce operation
overhead, dCache can dynamically make use of newly available data servers and automatically
redirect clients coming from a remote site to a locally available resource. This is achieved by
each data server connected to the system using an internal discovery mechanism to locate the Pool
Manager, a component that is responsible for client request distribution within the system. Data
servers that present the same tags are grouped together dynamically into pool groups. Based on the
client’s IP address, the file’s path and data flow direction (read or write), a desired pool group is
selected. When data is not available within the given pool group, it is replicated from elsewhere.
This flexible data placement mechanism ensures that when a file is requested from a remote location
it will be replicated to the (network-topology wise) nearest storage node. Once data is available
locally, all access will be served from the local copy. Moreover, data produced at the remote site
can be written into local store for further local use and later pushed to the main site. Such a setup
provides a transparent read-through and write-back cache behaviour for the end-user application
with a minimal operation overhead.

In addition to on-demand replication, dCache supports yet another two data replication modes:
a manual replication, where data managers can pre-place data at specified locations, and an au-
tomatic replication, which is typically used for data resilience. The latter can be configured to
guarantee data availability at different geographic locations.

The network-topology-aware data replication on demand is well suited for the cloud bursting
model. When CPU resources are allocated at the external resource provider, an additional dCache
data server is allocated. The dynamic pool group configuration will make use of this storage and
start to replicate requested data to the remote location. However, in case such an additional data
server cannot be added to the system, or this storage becomes unavailable, client applications will
continue to work, albeit with reduced efficiency.

For muti-node deployments it is recommended to run dCache in High Availability (HA) mode.
This is a deployment where a single node crash does not affect the overall system availability.
However, as a distributed system we cannot guarantee network reliability all the time. As Brewer’s
CAP Theorem [3] says: in case of network partitioning a distributed system cannot guarantee
consistency and availability at the same time. dCache is not an exception in this sense. Thus, in
case of network partitioning, dCache chooses consistency over availability. Although such behavior
is expected for typical deployments, in a hybrid cloud setup, where some nodes play a role of data
caches, we may prefer to provide access to the locally available cached data even if the main storage
system is not accessible. This is a subject of forthcoming development activity within the dCache
project.

3. dCache storage events

In this section we discuss storage events: a powerful, new way for clients to interact with
storage.

2



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

3.1 Introduction to storage events

Traditionally, clients interact with a storage service by issuing direct commands; for example,
by opening a file or requesting a file is deleted. The service’s response indicates whether this is
successful and, depending on the command, some additional information; for example, a request
to open a file returns a handle that represents the file’s open state if the user is allowed to read that
file, while a delete request returns whether the delete operation was successful.

This request-response pattern is also repeated for potentially long-running activity (e.g., stag-
ing media transitions or calculating a checksum), where a client requests the service starts an ac-
tivity and is provided with some token that represents this activity. The client may later use this
token when enquiring whether this activity has completed. To learn if the activity has completed,
the client must request the current status of the activity repeatedly: polling.

Although this request-response pattern is almost universally adopted, there are several limita-
tions with it.

First, only the client making the request knows that a particular command was issued. In
many scenarios, other services should be updated when data is uploaded, deleted, or when there
are other changes to the storage system. A common work-around for this problem is to use a special
client that informs the other services when it makes a change. This introduces new problems, as it
requires all changes to be made with this special client. As the underlying problem is not solved,
this work-around is fragile: changes that do not come through the client (e.g., admin intervention)
may still cause inconsistencies.

Second, polling to discover when a long-running activity has completed does not scale. The
number of queries the client must make increases with the number of long-running activities. Each
query uses resources to obtain the current status, resulting in some upper limit on the number of
concurrent activities a service may sustain, simply to answer all the client current-status requests.

Storage events is a new way of interacting with storage. In contrast to the traditional request-
response pattern, the storage system generates events when something happens, whether this is
from client interaction (e.g., a file has been uploaded, renamed, or deleted), from internal subsys-
tems (e.g., a file has been staged back from tape) or from admin intervention (e.g., storage nodes
being taken offline). A client subscribes to some subset of events, those triggered by transitions the
client is interested in discovering. These events are delivered to the client asynchronously, with-
out the client polling. As storage events do not require polling, the client learns of changes very
quickly. It also scales well, since the subscriptions typically require very few resources.

Broadly speaking, there are two approaches to deliver events: direct delivery and brokered. In
direct delivery, the events client connects directly with the storage system and subscribes to events
there. In a brokered delivery, the events client connects to some broker external to the storage
system and subscribes to topics. A topic is a group of related events. By subscribing to topics, a
client may have courser-grain control compared to direct delivery

Data catalogues, where a service maintains a list of data stored on dCache, is an example
where storage events are useful. By subscribing to storage events, catalogues learn of all changes
in the storage, while simultaneously allowing users to use any supported client for data transfer and
management.

Staging files back from tape is another example. To be as efficient as possible, tape systems

3



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

should avoid unloading a tape from a tape drive if that tape contains additional data to be staged.
To increase the likelihood that all desired data is read from a tape in one go, the storage system
should be presented with as many as possible of the files to be staged. Polling limits the number of
files present in a single request. This in turn limits the size of the list of files to be staged.

A similar approach is available in commercial cloud storage systems; for example, Amazon
provides Lambda and Google’s cloud platform provides Cloud Functions. Both systems allow
users to define computational work that is tied to events, with a canonical example being thumbnail
image generation when a photo is uploaded.

Event driven work-flows are also well supported by open-source software. Apache Storm
and Apache Spark provide analytical frameworks for events, while projects like OpenWhisk and
Kubeless provide more general computational frameworks. Apache Kafka and Apache Nifi provide
the infrastructure for routing events from the source to the destination.

3.2 Storage events in dCache

dCache provides two ways for clients to receive events: either using Apache Kafka or via
W3C’s Server-Sent Events (SSE) protocol. The two event delivery mechanisms have different
trade-offs with different intended audiences: they complement each other rather than providing
alternatives. Currently, these two event delivery mechanisms each provide a non-overlapping set of
possible events: some types of event are only available via Apache Kafka while other event types
are only available via SSE.

Apache Kafka is a de facto industry standard software package for building pipelines that
distribute events from services generating events to those services consuming them. The main
benefit of Kafka is that it is widely adopted, with good integration with many open-source projects.
dCache provides the possibility of sending certain dCache-internal events over Kafka. This is
currently the “billing” events: which record data transfers (a file being uploaded or downloaded,
internal replication) and deletions (removal in the namespace or a file’s data being removed from
storage media). These events currently lack any security model: a client that can see one billing
event can see all billing events.

W3C SSE protocol is a standard mechanism to deliver events to clients based on the HTTP
protocol. The client must authenticate to receive events and to manage subscriptions, and can
authenticate with any of the many authentication schemes that dCache supports. Currently SSE
supports an inotify-like protocol. Inotify is an API provided by the Linux kernel that allows clients
to discover when changes are made to the filesystem. The dCache implementation provides an
implementation of this interface, using SSE to deliver inotify events. As with the Linux inotify
implementation, dCache’s inotify has an authorisation model where clients can only see events if
they are authorised to do so. The main benefits of SSE/inotify are the built-in security and a more
complete set of events.

3.3 Use-cases and demonstrators

One of the software developments during the EU-funded INDIGO-DataCloud project is the
INDIGO Orchestrator. This allows clients to specify a desired analysis platform using the TOSCA
standard language. The Orchestator has a brokering feature where it selects the best available
Platform-as-a-Service (PaaS) site and orchestrates the desired services at that site.

4



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

Within the follow-on eXtreme-DataCloud (XDC) project, the INDIGO Orchestrator is ex-
tended to support dynamic data processing. To achieve this, the Orchestator uses dCache’s inotify
support, as delivered by the SSE interface, to learn when new data is available. It then contacts a
data management tool (Rucio) to ensure that new data is available at storage co-located with the
PaaS infrastructure and processes that data automatically as it arrives.

Once the new data has been processed, Rucio takes care that it is moved off to external storage,
leaving sufficient capacity for subsequent new data.

3.4 Storage events demonstration

During the talk, a live demonstration was given that illustrated some of the benefits of storage
events. In this demo, a video was taken of the audience with the speaker’s smart phone. This
video contained deliberately introduced camera shake. The video was uploaded from the phone
into dCache, triggering a storage event delivered to Kafka describing the new file.

A dynamic agent reacted to this storage event by checking the file matched configurable cri-
teria and generating pre-authorised URLs that allowed a computing infrastructure to download the
new file and upload multiple derived data. These pre-authorised URLs were included in a JSON
object, sent to Kafka on a separate task topic.

A scalable computing infrastructure was deployed as a Function-as-a-Service (FaaS) resource.
The OpenWhisk platform was chosen as the implementation, which provides good integration with
Apache Kafka. For this demo, the OpenWhisk cluster was configured to listen to the task topic.
When it received the JSON object from the dynamic agent, it dispatched the task to a container that
was configured to download the video, use ffmpeg’s vid.stab plugin to apply a two-pass “de-shake”
filter, creating a version of the video with reduced camera shake. A subsequent ffmpeg operation
generated a split-screen video, combining the left-half of the original video with the right-half of
the deshaked video. These two artefacts (the full deshaked video and the split-screen video) were
uploaded to dCache using the pre-authorised URLs.

This demonstration provides a trivial example of a more general model, where advanced com-
putation may be triggered by uploading data into dCache. This powerful model is explored further
in the next section, along with interactive applications of FaaS computing.

This ability to trigger computational work when data is uploaded is, in turn, only one example
of more general integration possibilities, where external systems react to changes within dCache.
Other uses include service synchronisation, where some external service provides an enhanced
(domain-specific) view of stored data. Such services must be made aware of any changes to that
data (available new data, data deleted, etc). Storage events provide a powerful way to integrate
such services.

4. Function-as-a-Service as use-case for dCache storage events

The Photon and Neutron science community (PaN) is pushing frontiers with ground breaking
research and technologies in molecular imaging at the atomic level. State of the art Photon and
Neutron sources, like the European XFEL [4] and the European Spallation Source (ESS) [5] will
create hundreds of Petabytes of data per year, challenging established data processing strategies.
Leveraging cloud computing methodologies to provide innovative flexible and scalable storage and

5



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

compute services, the project Photon and Neutron Science Demonstrator (Pan SD), in the European
Open Science Cloud for Research Pilot (EOSCpilot) [6] 1, covers the entire data life cycle from
experiment control to long term archival. A particular focus was given to FAIR [7] access to large
volumes of scientific data and the general re-usability of research artefacts. The reproducibility
of methods and results is achieved with an integrated approach that bundles publications, data,
workflows and functions implemented in containers. Building on cloud native solution building
blocks deployed on commodity hardware and on dCache as storage backend, a service oriented
architecture is presented that enables scientists to develop micro-services and make them available
for interactive and event-driven scientific analysis workflows. Services discussed in this section,
have been made publicly accessible through the EOSC portal [8] for demonstration and testing.

During this project, DESY has advanced with a CEPH-backed OpenStack on-premise cloud
infrastructure, from PoC to the integration with the EGI FedCloud. Key design principles are a fully
functional auto-scaling infrastructure, taking advantage of the programmability of software defined
resources, self-healing features and service discovery. These objectives are widely achieved, lever-
aging Platform-as-a-Service (PaaS) strategies, deploying Kubernetes and Docker with OpenStack
as Infrastructure-as-a-Service (IaaS) layer.

In the following chapter, we will briefly introduce the solution building blocks, comprising
input from the GitLab [10], Jupyter [9] and OpenWhisk [11] projects as shown in figure 1, and
then present two use case models for interactive usage of containerized functions as-a-service in
Jupyter Notebooks. We will then show how dCache storage events seamlessly enable event-driven
automation with the same codes on the same architecture. We conclude with lessons learned from
deploying codes from photon and neutron science to the described platform.

Figure 1: Solution architecture and data flow

4.1 Solution building blocks

At the center of the user-perspective, we make the Jupyter Notebook available as a service for
users in the European Open Science Cloud, accessible through Jupyter Hub, deployed via Zero-to-
Jupyter-Hub (z2jh) Helm charts [12]. We integrate with federated AAI using EGI Check-in [13]
as OpenID Connect (OIDC) proxy, which is interoperable with the Shibboleth Identity Provider

1The European Open Science Cloud for Research pilot was funded by the European Commission, DG Research &
Innovation under contract no. 739563

6



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

(SAML) at DESY. Offering 10 GB persistent storage per single user server, we integrate also
OpenStack Cinder and create volumes for new users automatically. We allow users to set up the
environments in which they run their Jupyter Server by building Docker Containers from GitLab
repositories, through pipelines executed by GitLab’s CI/CD Runners (Continuous Integration /
Continuous Delivery).

While we still manually scale the Kubernetes Cluster for the Jupyter Hub itself, we have
achieved full auto-scaling for CI/CD jobs that build and deploy these user environments. For this,
we deployed GitLab based on OpenStack HEAT templates, offering auto-scaling GitLab Runners
configured for Docker+Machine executor and OpenStack Driver. Users find a template project
with re-usable, yet customizable, CI/CD configuration (.gitlab-ci.yml) based on Docker-in-Docker
(dind) approach. A local pull-through Docker registry mirrors the Docker Hub and a S3 Cloud Stor-
age enhance the re-usability of artefacts and layers between CI/CD stages and save exectution time.
The cache is implemented based on MinIO, but is foreseen to be replaced by dCache itself in fu-
ture releases. Submitting user environments as code into version control supports re-producability,
which is completed by checksums for CI/CD pipelines and container builds, allowing to track
changes in environments and to roll back to a certain version and configuration by refering to that
specific revision. Users can share built containers on Docker Hub or other external registries. As
means to revisit codes that are continuously deployed on the cloud platform, they also push to the
projects own registry in the same namespace as their GitLab project, which allows the deployment
of GitLab’s access token management in sync with the projects user and group settings.

Approaching the main topic of this section and one of the key features of the EOSCpilot PaN
platform, we describe how the same CI/CD strategy is applied to publish functions running on
user-defined software stacks as micro-services. We have evaluated the integration of the projects
Kubernetes Fission, OpenFaas and OpenWhisk, which all have in common, that users can run
containers as functions as-a-service. In this chapter, we will discuss the current version, in which
we chose to integrate Apache OpenWhisk. The project is designed to deploy functions directly
from code (down to one single file) in runtime environments which are provided for a rich set of
programming languages. The functions can then be called via a simple HTTPS service, either
directly per URL (curl, HTTP clients) or with the project-provided client. Atomic function calls
can be done synchronously, asynchronously and also sequenced conditionally.

Users at photon and neutron facilities typically work with highly specialized scientific envi-
ronments, hence we need to include libraries, frameworks etc. to the runtime containers, a con-
cept named blackbox images in OpenWhisk. The most simple implementation layout for a cloud
function using a blackbox image is a GitLab project that comprises a Dockerfile defining the en-
vironment, and a single file that provides the function to run on top of it. This is complemented
by the re-usable, customizable CI/CD definition file, which allows continuous integration of the
function by building the Docker Container, deploying it to a test namespace on OpenWhisk, per-
forming functional tests, and then releasing a Docker Container in the project’s registry as well
as deploying it to the given production name space. OpenWhisk admins can distribute the needed
authentication keys via CI/CD variables in GitLab, with fine grained control over their visibility
based on projects, users and groups. This release strategy also allows to pull and run the functions
from federated resources, e.g. in the EGI FedCloud or the European Open Science Cloud.

We documented our recommendations to use git from the single user servers and showed, how

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

nbgitpuller links [14] can be used to grant access to notebooks, which are published in git, and
which will be automatically synced to the user’s Jupyter Server, for users following those links.
A related technology, which we are planning to implement is the Jupyter BinderHub [15], which
provides another way to define the Jupyter Server environment, in which the published notebooks
should run. At the time of writing the missing user authentication in current releases remains a
blocking issue, but we expect this feature to be available soon. Almost the same functionality can
be achieved, by allowing users to choose from customized server environments, which are shown at
login time. This requires that users can identify interoperable environments for a given notebook,
but we are working with the Jupyter Project on a solution that also eradicates this last manual step
in the next release.

4.2 Interactive use of functions as a service

The focus on collaboration in the European Open Science Cloud and this science demonstrator
project which brought together service providers and scientists from photon and neutron science,
stressed the demand to enable collaborative editing of science notebooks as well as sharing of
functions to use in different workflows. Like the Jupyter Project, the scientific platform presented in
this section allows sites to build on a broad spectrum of programming languages, hence distribution
of functions with means of a given language (e.g. pip for python) can only serve a matching subset
of notebooks/workflows. In a live demonstration during our talk at the ISGC, we showed that
provisioning of codes as services is an interesting approach to solve this problem.

We imported a compact python class providing convenience wrappers for a subset of the Open-
Whisk and dCache APIs. However, advanced users still have the choice to use either the APIs
directly in their own code or use the OpenWhisk Go client binary, which is installed in the Jupyter
Server Single User Environments. This is independent of the kernel on which the notebook runs.
Another elegant way to call functions from notebooks are Jupyter Widgets, which provide many
features for interactive user workflows, where parameters for function calls can be selected from
drop down lists or configured and validated with the help of the various input widgets such as the
slider widget. Remote function execution can also be initated by mouse click, in the easiest layout
just by pressing a button. More advanced page impressions are also possible, such as selecting
features in a plot or an embedded image.

The first example we presented was a very simple micro-service to work on reference data sets
from the Linac Coherent Light Source (LCLS) [16] photon science facility that were published as
set cxidb-21 by the Coherent X-ray Imaging Data Bank (CXIDB) [17, 18], a website dedicated
to the goal of archiving data from Coherent X-ray Imaging (CXI) experiments and making them
available to improve the reproducibility of results and to enable new research based on previous
experiments. For this science demonstrator, we copied the data to the dCache storage backend
hosted in the DESY data-center. The data is publicly accessible, however, the following examples
for micro services work with the dCache API and WebDAV doors, for which they can make use
of Macaroons, to access data protected by ACLs. This safe way of delegating access rights allows
stateless container based functions to read and write data and to perform other operations to manage
the respective namespaces.

In many realistic use cases for science notebooks in large scale data driven research, some
method of compiling lists of files will be performed, which serve as input for further processing.

8



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

Often, this contains nested loops and selection cuts. Repeatedly including related code blocks
in science notebooks does not leverage full re-usability, but instead adds potential for undetected
errors and distracts the reader from the main workflow. They can be extracted and easily imple-
mented as a simple service, which allows to share the method, to reduce the amount of codes in
user facing notebooks and to focus on other steps of the respective workflow. On a button press, the
information is retreived from a FaaS execution as serialized JSON, which is directly deserialized to
a Python object in the interactive user session. In this example, the result was a dictionary holding a
list of links to the selected data and an integer number giving the length of that list. This dictionary
may be used as input for microservices, that process the list of files e.g. to start a batch job or to
call a function for each link and finally perform a map reduce operation on the respective outputs.

The second example illustrates a use case where data needs to be transferred and processed, in
this case to visualize the content of a HDF5 file, a detector readout in serial x-ray crstallography.
The service is implemented by running the program hdfsee, which is a part of the CrystFEL frame-
work [19]. For particular implementations, users can write their own programs compiled against
the C library libcrstfel. However, the framework provides a lot of functionality and its tools can
operate on data from a broad spectrum of experiments, detectors and related file creation modules.
This FaaS deployment works without downloading data to the users’ single notebook server, where
it would still fit in this case, but will no longer fit well for growing file sizes, which we observe for
data sets obtained with latest instruments e.g. at the European XFEL. Note, that in a multi-cloud
environment, the Jupyter Server may run in a different data center, than the storage element and
transfering the data set via Wide Area Network should be avoided. The approach we discuss here
deploys the function to process the data on compute elements in the same data center as the storage
elements and data is streamed in the local high bandwidth network. The result (in this case an
image only approx. 2 MB in size) is then written back to dCache, from where it can be shared,
accessed or embedded in the notebook or other webviews. The HTTP response for the function
execution contains the links to the files created. This response, as well as the logs created during
the function run, will also be stored in the activation database managed by the FaaS service.

This strategy is particular suited for short running functions performing data reduction, vali-
dation or visualization. The maximum function runtime defaults to 5 minutes in the OpenWhisk
standard configuration, the maximum size of data directly returned with the HTTP response de-
faults to 1 MB. It is also possible to integrate other architectures, e.g. trigger batch processing by
submitting into nearby HTC clusters, thereby providing dedicated batch processing pipelines as a
service. Newest developments of those platforms, for instance as presented in the HTCondor work-
shop at the ISCG also allow interactive processes, which would allow to connect from the Jupyter
Notebook, e.g. to display intermediate results. A similar behaviour in containerized micro-services
can be reached by implementing an API inside the container and exposing the endpoint during run
time.

4.3 Running functions in response to storage events

In the demonstrated setup, the dynamic processing tool [20] works with the Kafka Stream
API to map Kakfa messages published by the dCache storage backend into subqueues. It filters
the messages by information like the upload path, uploading user or source IP and matches file
names to a regular expression. Messages are re-published on dedicated topics on the same or a

9



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

different Kafka broker, where they can be secured with respective authentication, authorization and
certificates to support multi tenancy in cloud environments.

All FaaS platforms evaluated and operated for this project provide connectors to Kafka bro-
kers, that consume message queues accessible by server endpoint and topic. Incoming messages
in the FaaS cluster will fire a trigger, which can be mapped by rules to one or more functions or
sequences of functions. Each function again, can be mapped by more than one rule. The trigger
invocations, as well as the function invocations are tracked in the activation database. It is possible
to replay whole queues, e.g. to repeat data processing steps with updated codes or configurations.

An important design goal of the presented microservices is to enable the use of exactly the
same function both, interactively and fully automated. The data visualization example can be
triggered via a Kafka message, and can automate the creation of previews or thumbnails which can
be used to display a dynamic web page representing a data set. The simple and generic layout for
such a data processing micro service expects two links as function arguments, one download link
to read data for processing, and one upload link to the output directory to upload results. They
can be provided by the user in an interactive session as well as by the Dynamic Processing tool in
automation pipelines. In both use cases, embedded macaroons delegate read and write access in a
secure way, allowing to restrict their use to the IP range of the FaaS cluster and add an expiration
date.

In the eXtreme-DataCloud (XDC) project, DESY demonstrates that event-driven code exe-
cution as a service adds a flexible building block to smart data placement strategies, enforcing
machine actionable Data Management Plans. For this, the FaaS system interacts with rule-based
data management engines and file transfer systems, e.g. to create replicas of data sets with respect
to data locality and Quality of Service for storage. On data ingestion, files can be copied to cloud
storage elements, which act as buffers next to strong clusters of compute elements that perform
Function-as-a-Service pipelines and update data placement rules on success. This automatically
deregisters files in the buffer next to the compute clusters, and triggers their distribution to offline
storage and long term archival.

Another appealing use case is re-staging data from tape after archival, which often may include
a waiting time in the order of minutes or even hours. The implementation of data processing
or batch processing starters as a service allows to trigger following steps in the workflow fully
automated as soon as the data is available on disk. Also in the other direction of QoS changes,
the archival of data from disk to tape, event-driven code execution is applicable in some use cases,
performing data validation to assert that only cross checked data sets are effectively moved to long
term archival.

4.4 Scientific frameworks integration in serverless applications

The EOSCpilot PaN SD worked with the model cases CrystFEL (Photon Science) and Mantid
(Neutron Science), which both usually process large volume data sets. An important considera-
tion with the photon and neutron community is that a majority of users expects functionality to
be delivered through directed workflow management tools and graphical user interfaces (GUIs).
The implementation of the discussed hdfsee micro service also serves to illustrate an important
limitation for the integration of scientific frameworks in cloud native applications. The original im-
plementation is done in C and GTK3, where the framework supplied solution is bound directly to

10



P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

the GTK classes and no strict separation into backend (reading into a pixel buffer, producing a PNG
file) and frontend (display image in GUI, provide menu entry to export image) is implemented. To
make this original code work in a stateless container, whithout display and user interactions, we run
the tools with a virtual pixel buffer (xvfb) and a virtual user input to simulate keystrokes (xdotool).

Factoring in benefits of rapid development of serverless deployments, framework authors
would ideally take the effort of separate core from GUI codes to make them accessible in head-
less compute environments. For cloud native applications, a co-development approach adds strong
competences on the provider side, with respect to enhanced scalability and facilitated configuration
management as well as integration with event-driven use cases.

We also see a strong trend towards the reimplementation of visualization codes directly in
Widgets in Jupyter Notebooks, to make them available as genuine embedded elements which adds
value and anhances user experience in many cases. However, forking the code for Jupyter Wid-
gets should be carefully justified, weighting the maintenance effort for future developments and
evaluating the stronger interoperabiltiy of the FaaS approach.

In many cases, where users re-invoke previously completed data analysis procedures, the
function-wise organization scheme, together with the strong revision based implementation, that
versions data, software and containers build from it, promises better caching approaches than con-
current HTC activation strategies. The exact environment, arguments passed to the functions, input
read and output created can be accessed from the activation database and backend storage later-on.

Further ongoing research includes the routing of event-driven containerized processes to FaaS
based clusters, taking into account data locality. Another objective is the integration with existing
computing pipelines HPC and HTC clusters, running jobs with consistent data profiles as a service,
using FaaS to compile submit start scripts. An interesting emerging feature here is the ability to
snapshot running containers, and move them between infrastructures on behalf of the user.

References

[1] Rouse, Margaret. Definition: Cloudbursting SearchCloudComputing.com (2011).

[2] G. Behrmann, P. Fuhrmann, M. Grønager, and J. Kleist A distributed storage system with dcache,
Journal of Physics Conference Series vol. 119, (p. 062014), (2008).

[3] Seth Gilbert and Nancy Lynch, Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services, ACM SIGACT News, Volume 33 Issue 2, pg. 5159.
doi:10.1145/564585.564601 (2002).

[4] European XFEL - European X-ray Free Electron Laser https://www.xfel.eu

[5] ESS - European Spallation Source https://europeanspallationsource.se/

[6] principle findings from the EOSCpilot project
https://www.eoscpilot.eu/sites/default/files/eoscpilot_principal_findings.pdf

[7] FAIR Guiding Principles for scientific data management and stewardship
http://www.nature.com/articles/sdata201618

[8] EOSC portal https://www.eosc-portal.eu

[9] Project Jupyter https://jupyter.org

11

SearchCloudComputing.com
https://www.xfel.eu
https://europeanspallationsource.se/
https://www.eoscpilot.eu/sites/default/files/eoscpilot_principal_findings.pdf
http://www.nature.com/articles/sdata201618
https://www.eosc-portal.eu
https://jupyter.org


P
o
S
(
I
S
G
C
2
0
1
9
)
0
0
7

Event-driven computing with dCache Patrick Fuhrmann

[10] GitLab https://gitlab.com/

[11] OpenWhisk https://openwhisk.apache.org/

[12] Zero to JupyterHub with Kubernetes https://zero-to-jupyterhub.readthedocs.io/en/latest/

[13] EGI Check-in https://wiki.egi.eu/wiki/AAI

[14] nbgitpuller https://github.com/jupyterhub/nbgitpuller

[15] BinderHub https://binderhub.readthedocs.io/en/latest/

[16] LCLS - Linac Coherent Light Source https://lcls.slac.stanford.edu/

[17] CXIDB - Coherent X-ray Imaging Data Bank), http://www.cxidb.org/

[18] CXIDB-21 Data Set doi: 10.11577/1169541, www.cxidb.org/id-21.html

[19] CrystFEL: a software suite for snapshot serial crystallography http://www.desy.de/~twhite/crystfel/

[20] Dynamic Data https://github.com/paulmillar/dynamic-processing

12

https://gitlab.com
https://openwhisk.apache.org/
https://zero-to-jupyterhub.readthedocs.io/en/latest/
https://wiki.egi.eu/wiki/AAI
https://github.com/jupyterhub/nbgitpuller
https://binderhub.readthedocs.io/en/latest/
https://lcls.slac.stanford.edu/
http://www.cxidb.org/
www.cxidb.org/id-21.html
http://www.desy.de/~twhite/crystfel/
https://github.com/paulmillar/dynamic-processing

