PROCEEDINGS

OF SCIENCE

Building an elastic batch system with private and
public clouds

Wataru Takase*
High Energy Accelerator Research Organization (KEK)
E-mail: EET 2y T akaseldkeR

Tomoaki Nakamura
High Energy Accelerator Research Organization (KEK)

E-mail: Ecmoaki .nakamuralkek . jd

Koichi Murakami
High Energy Accelerator Research Organization (KEK)

E-mail: Koichi .murakamilkek.jd

Takashi Sasaki
High Energy Accelerator Research Organization (KEK)

E-mail: Eakashi.sasakilkek. Jd

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:wataru.takase@kek
mailto:tomoaki.nakamura@kek.jp
mailto:koichi.murakami@kek.jp
mailto:takashi.sasaki@kek.jp

The Computing Research Center at High Energy Accelerator Research Organization (KEK) pro-
vides a Linux cluster consisting of 350 physical servers with 10000 CPU cores for the scientific
data analysis and numerical simulation. All of the computing resources are shared by using a
batch system among the various projects supporting at KEK. We have adopted IBM Spectrum
LSF as the batch system for many years, and users in KEK are well familiar with the system.
However, when the computing cluster is becoming congested by the lack of resource, user jobs
make a long stay in a job queue. As a result, the turnaround time often becomes longer for each
job to be finished. Furthermore, we have to consider the different requirements for processing
environments depending on users/groups.

Providing flexible resources both in terms of computing power and environment, we have in-
vestigated the possibility of cloud computing technology. IBM Spectrum LSF has an optional
functionality so-called Resource Connector which enables us to utilize additional computing re-
sources in external cloud providers. By using that functionality, we have succeeded to integrate
our batch system with on-premise OpenStack cloud and Amazon Web Services (AWS) by the
collaboration with National Institute of Informatics (NII), Japan.

Users’ jobs submitted into the dedicated job queue are going to be dispatched to dynamically
provisioned instances on on-premise OpenStack, AWS, as well as static local computing node.
Any kind of job processing environments can be utilized by choosing a different virtual machine
according to the user’s request. The OpenStack based private cloud has been integrated with our
LDAP service and GPFS for user authentication and data sharing on our batch system, respec-
tively. Amazon Simple Storage Service is utilized for the data exchange between KEK and AWS.
Both the physical servers on the batch system at KEK and provisioned instances on AWS mount
the S3 bucket via FUSE for transparent data access. We conducted some performance tests on our
hybrid batch system for investigation of the scalability and succeeded to execute a Deep Learning
job using 3500 cores on AWS.

In this talk, we would like to present the detailed configuration of the hybrid system and some
results of the performance tests.

International Symposium on Grids & Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

*Speaker.

Building an elastic batch system with private and public clouds Wataru Takase

1. Introduction

A batch system makes it possible to share large computing resources among multiple users.
A user submits a set of programs (a batch job) to a job queue. After waiting until the requested
resources become available, it is processed on dispatched computers.

The Computing Research Center at High Energy Accelerator Research Organization (KEK)
provides a batch system for the various projects supporting at KEK. It consists of 350 physical
servers with 10000 CPU cores for the scientific data analysis and numerical simulation [0]. All
the Operating Systems are Scientific Linux 6. We have used IBM Spectrum LSF [Q] as the batch
scheduler for many years, and users in KEK are well familiar with the system.

There are two challenges in the system. One is to deal with piled up waiting jobs due to
the resource limitation. When the system is becoming congested, jobs make a long stay in job
queues. As a result, turnaround times become longer. The other is to react to requests for various
environments. We have received several requirements for specific job processing environments
from our users.

In this paper, we provide a solution to resolve the challenges by integration of the batch system
and cloud computing technology. This paper starts with a description of how we integrate the batch
system with private and public clouds. Section 3 describes some performance test results on AWS.
An automatic offloading to the AWS cloud is demonstrated in Section 4, and finally in Section 5,
we provide a summary of the work.

2. Cloud-integrated batch system

Cloud computing enables flexible provisioning of computing resources by utilizing virtual
machines on demand and can provide various data analysis environments. In order to resolve the
two challenges in our batch system, we have investigated the possibility of using the following
technology.

IBM Spectrum LSF has an optional functionality so-called Resource Connector [B] which
enables us to utilize additional computing resources in external cloud providers, such as Amazon
Web Services (AWS), Microsoft Azure, OpenStack. By using that functionality, we have succeeded
to integrate our batch system with on-premise OpenStack cloud and AWS by the collaboration
with National Institute of Informatics (NII), Japan. The system enables to expand its computing
resources and provide various job processing environments dynamically.

Figure [shows the overview of the cloud-integrated system. We prepared cloud-specific batch
queues for each cloud. If a user submits a job to the OpenStack queue, Resource Connector cre-
ates instances on the on-premise OpenStack cloud based on the user’s request. Then, the job is
dispatched to them. After a certain period, unnecessary instances are deleted automatically by Re-
source Connector. If a user submits a job to the AWS queue, it is going to be executed on instances
on AWS in a similar fashion.

For the integration a cloud administrator needs the following actions:

1. Create an instance on the target cloud. Then, install the necessary software and configure on
it for job processing. Finally, create an instance image from the configured instance.

Building an elastic batch system with private and public clouds Wataru Takase

On-premise resource

—» SL6 cluster ‘

[}
—
I

e _— . |
S — .
k4

LSF » Resource F-STIzIDIIzzs -
Connector ~— AWS ‘

Queue based resource selection

Figure 1: Overview of the cloud integrated batch system.

2. Create a Resource Connector template containing the target cloud information such instance
image ID created previous step, instance type, subnet (see Figure D).

3. Create a batch queue and link to the template.

If a job is submitted to the queue, the linked template is referred. Instances are provisioned on the
target cloud based on the template information.

{
"templates": [
{
"templateId": "Template-AWS—4cores",
"attributes": {
"type": ["String", "X86_64"1,
"ncpus": ["Numeric", "4"],
"awshost": ["Boolean", "1"1],
"gpu": ["Boolean", "o"1],
"ami": ["String", "@123456789%9abcdef0"]
I
"imageId": "ami-abcdefabcdefabcde",
"subnetId": "subnet-01234567",
"vmType": "m4.xlarge",
"maxNumber": "20",
"keyName": "key-pair",
"securityGroupIds": ["sg-abcdef@i1"],
"instanceTags": "role=1lsf",
"userData": "ami=abcdefabcdefabcde"
},
{
"templatelId": "Template-AWS-4cores—-GPU",
"attributes": {

Figure 2: An example of a Resource connector template.

2.1 Integration with OpenStack

We have provided OpenStack based private cloud pre-production service at KEK. The cloud
has been integrated with the batch system. We prepared some OpenStack images based on the
following Operation Systems: Scientific Linux 6, CentOS 7, and Ubuntu 16.04. Managers of each

Building an elastic batch system with private and public clouds Wataru Takase

project supported at KEK are granted permission to create custom ones based on those images for
various job processing environments.

The OpenStack cloud has also been integrated with our LDAP service and IBM GPFS (General
Parallel File System). We configured the OpenStack to use the LDAP for the authentication and
Linux account management as with the batch system. GPFS is used by the batch system to share
some directories such user’s home, and project shared spaces. We configured OpenStack instances
to share the GPFS file system with the Scientific Linux 6 physical servers. We did not make
instances to mount the GPFS file system directly because GPFS requires to register a client machine
information to be connected. In order to avoid the additional GPFS operation at every instance
creation, the OpenStack physical compute nodes mount the GPFS file system and expose necessary
Linux directories to instances via NFS.

2.2 Integration with AWS

An LSF batch scheduler requires communication with each job processing server. We only
assign a private IP address to each instance on AWS and avoid public IP address allocation for
security reasons. For communication between KEK and AWS machines, we set up a VPN server
on AWS. The server is only accessible from KEK. The batch scheduler in KEK can connect to
instances on AWS through the server.

Although instances share an NFS file system inside of the AWS network for coordinated job
processing, there was no path to share a file system between KEK and AWS. Therefore, we needed
to consider the way of the data sharing.

2.2.1 Data sharing between KEK and AWS

The batch system and the on-premise OpenStack share the GPFS file sytem in KEK. Therefore,
an instance on the OpenStack can read input data from the file system and write output to it as the
same manner of the Scientific Linux 6 cluster. Instances on AWS cannot mount the same GPFS
file system because the file system doesn’t export any mount point to outside of KEK for security.

We decided to use AWS Simple Storage Service (S3) for the data sharing. It provides object
storage service and accessible from the Internet and also from instances on AWS. There are a Web
user interface and a specific command line interface for S3 data uploading and downloading. How-
ever, we preferred to provide transparent remote file access to our users. S3FS [H] or Goofys [H]
allows Linux to mount an AWS S3 bucket via FUSE. A user can upload and download data with
Linux ¢p command by using those tools. Job submission servers on KEK and instances on AWS
have been configured to mount the same S3 bucket for the data sharing. The data exchanging work-
flow is as follows: At first, a user puts input data to the S3 bucket. Secondly, the user submits a job
which executes the user’s application and writes output to the bucket. Lastly, the user get output
from the bucket.

We compared upload and download speeds between using S3FS and Goofys. Table [shows
four datasets used for the tests. ¢p command was used to upload and download each of the datasets.
The results are shown in Figure B and Figure B. The Goofys upload performance is better than the
S3FS. Especially, uploading speed of more than 100 MB files is 1.7 times faster. On the other
hand, in terms of POSIX compatibility, S3FS has more than Goofys; for example, S3FS enables

Building an elastic batch system with private and public clouds Wataru Takase

Table 1: Prepared datasets for uploading/downloading tests.

Dataset | Number of files | Each file size
Dataset 1 1000 1 MB
Dataset 2 100 10 MB
Dataset 3 10 100 MB
Dataset 4 1 1000 MB

random access and better metadata handling. In the case of requiring less POSIX compatibility, we
consider using Goofys is a good solution.

Upload speed: KEK to AWS S3 (Tokyo region) Download speed: AWS S3 (Tokyo region) to KEK
120 90
80
100
70
80 60
] 8 50
< <40
40 30
20
20 I o
N | © mil
1MBx1000 10MBx100 100MBx10 1000 MBx 1 1MBx1000 10MBx100 100MBx10 1000 MBx 1
files files files file files files files file
M s3fs W goofys ms3fs mgoofys
Figure 3: Upload speed from KEK to AWS. Figure 4: Download speed from AWS to KEK.

2.2.2 Monitoring resource transition on AWS

AWS offers a pay-as-you-go service. It’s important for us to monitor resource utilization on
AWS. We set up a monitoring system using Elasticsearch, Logstash, Kibana, and Beats. Launched
instances send own system information to an Elasticsearch server by Beats and Logstash. The
batch system administrator can check resource utilization on a Kibana dashboard. In the dashboard
(see Figure B), we can check number of running instances (the upper left), number of available
CPU cores (the upper middle), a transition of using the number of cores (the upper right), CPU
utilization (the lower left), and workload (the lower right). The upper right chart describes that
available CPU cores were increased by instances creation based on users’ requests. Moreover,
it shows that number of CPU cores were decreased by unnecessary instances deletion after jobs
finished.

3. Evaluation of the AWS cloud performance

We measured scalability of the AWS environment we set up by executing two kinds of batch
jobs. The results are described the following sub-sections.

Building an elastic batch system with private and public clouds Wataru Takase

Dashboard / Isf Fullscreen Share Clone Edit Wl Iminue < Olastsh >
Search... (e.g. Status:200 AND extension:PHP) Uses lucene query syntax n

Discover Add a filter +

Visualize

number_of instances number_of_cores cpu.cores
Dashboard
©ip-100-18.apnorthe..
©1p-10.0-17.ap-northe..
®ip-100-1-6.ap-northe..
0.1

Timelion

DevTools

=y 50 2,512

number of instances Sum of system.cpu.cores

©ip-10:01-
©ip-10-0-1-54.ap-north.
ip-10-0-1-53.2p-north.

cpu.cores

©ip-10.0-1-5.apnorthe.
 ip-10-0-1-49.ap-north.

o800 1000

@timestamp per minute

cpu.total. pet load.15

®ip-10-0-18.ap-northe. 2500
©ip-10-0-1-7.ap-northe.

®ip-10.0-18.ap-northe.
©ip-100-1-7.ap-northe..
ip-10-0-1-6.ap-northe..
0-1-58 ap-north.
ip-10-0-1-55.p-north.
©ip-10-0-1-54.2p-north.
ip-10-0-1-53.ap-north.
©ip-10.0-1-5.apnorthe.
ip-10-0-1-49.ap-north.

®ip-10.0-1-6.3p-northe.
©ip-10-0-1-58.ap-north
©ip-10:0-1-55.ap-north

load.15

®ip-10-0-1-54.ap-north.
1.5:

1000 11:00

@timestamp per minute @timestamp per minute

Figure 5: Monitoring resource usage on AWS by Elastic Stack.

3.1 Submission of Monte Carlo simulation jobs to AWS

We submitted Geant4 [H] based Particle therapy Monte Carlo simulation [[] jobs to the AWS
queue. The simulation shoot 2 million protons in total against a treatment head with patient data
obtained from CT images and outputs simulated dose distribution. The simulation workload can be
distributed on multiple CPU cores. We measured the simulation times by changing the number of
using CPU cores. The same jobs were submitted to a KEK queue which only consumes the KEK
resource for the comparison.

Figure B shows measured simulation times to be finished. The blue and orange correspond to
the results on KEK and AWS respectively. Although the AWS simulation times took longer than
the result on KEK, we observed the same tendencies that the simulation times become shorter by
increasing the number of CPU cores used.

We consider the NFS leads to degrading the performance on AWS. In the simulation, each CPU
core reads input data from a shared directory and outputs the result to it. KEK local environment
uses GPFS which enables users to access data with high throughput. On the other hand, the single
NFS server we prepared on AWS may downgrade read and write performances at the time of
parallel data access.

3.2 Submission of Deep Learing jobs to AWS

We also submitted TensorFlow [H] based Deep Learning training jobs to the AWS queue. The
job builds Convolutional Neural Network, then trains to classify CIFAR-10 [B] images into ten
categories. TensorFlow enables distributed training by constructing a cluster. A cluster consists of
two kind of servers, parameter servers and worker hosts. Parameter servers store and update the
network parameters. Worker hosts caluculate network loss. As increasing the number of worker
hosts, the training speed becomes faster.

We set up a cluster consisting of a single parameter server and several worker hosts. Then, we
measured training time by changing the number of worker hosts. The result is shown in Figure 0.
With 64 CPU cores, it took more than 23,000 seconds to train. As using CPU cores doubled,

Building an elastic batch system with private and public clouds Wataru Takase

Simulation time vs. Number of CPU cores

10000

1000

100

10

Simulation time [sec]

1 10 100 1000
Number of CPU cores

——KEK —-AWS

Figure 6: Comparison of Monte Carlo simulation times.

training time becomes halved. We confirmed the training speed performance is scaled well up to
1920 CPU cores. Although we increased using the number of CPU cores to 3648, the performance
did not improve further. In clustered TensorFlow training, each worker host repeats to calculate
the network loss and to report it to the parameter server during the training. We consider that
parameter exchange leads the traffic congestion. About this thing, we need a further investigation
that the increasing number of parameter servers further improves the performance or not.

Training Time of 500 epochs vs. Number of CPU cores
100000

10000

Training Time [sec]

1000

100
10 100 1000 10000
Number of CPU cores

Figure 7: Deep Learning training speed.

4. Automatic offloading to AWS

The previous section described the scalability of the AWS environment by submission of jobs
to the AWS queue which consumes only AWS resource. We prepared another queue which con-

Building an elastic batch system with private and public clouds Wataru Takase

sumes both KEK and AWS resources. A job submitted to the queue runs on servers in KEK if the
resource is available; otherwise, it’s going to be dispatched to instances dynamically launched on
AWS. Using the queue, we have succeeded to offload some batch workloads to the external cloud
dynamically at the time of congestion.

Figure B visualizes transitions of individual status of 3000 jobs submitted to the queue at the
same time. First, some jobs are dispatched to KEK servers, and there is no more free resource on
KEK. Then, Resource Connector launches AWS instances, and part of the other jobs run on them.
The batch scheduler dispatches some jobs to a newly found resource on KEK. Finally, the others
run on AWS instances.

2801
2601
2401
2201

2001

1ot Running on KEK

1601

1401

Each Job Status

1201

1001

801

601

401

201

Running on KEK
0 500 1000 1500 2000 2500 3000
Elapsed Time [sec]

m pend_time (local) m pend_time (aws) ®run_time (local) mrun_time (aws)

Figure 8: Visualization of automatic offloading.

5. Summary

This paper showed the integration of the IBM Spectrum LSF based KEK batch system with
on-premise OpenStack and AWS clouds using the Resource Connector functionality. We prepared
some cloud-specific batch queues and linked them to the Resource Connector templates. A job
submitted to the cloud dedicated queue is dispatched to instances provisioned on the linked cloud.

We submitted Monte Carlo simulation jobs to the AWS queue and confirmed working well
with slight performance degradation due to NFS. Deep Learning training jobs also worked well
and scaled up to 1920 CPU cores. In addition, we demonstrated the automatic offloading some
batch workloads to the AWS cloud dynamically.

Building an elastic batch system with private and public clouds Wataru Takase

The integrated system enables the KEK batch system to expand computing resources to the
cloud, reducing turnaround times of jobs at the time of congestion. Moreover, the system provides
any kind of job processing environments by choosing a difference instance image.

Acknowledgments

Cloud resources used in this work was provided in the Demonstration Experiment of Cloud
Use conducted by National Institute of Informatics (NII) Japan (FY2017).

References

[1] K. Murakami, G. Iwai, T. Sasaki, T. Nakamura, and W. Takase, System Upgrade of the KEK Central
Computing System, in Journal of Physics: Conference Series, Volume 898, 082038, 2017.

[2] “IBM Knowledge Center - IBM Spectrum LSF.” https://www.ibm.com/support/
knowledgecenter/en/SSWRJV/product_welcome_spectrum_lsf.html.

[3] “IBM Knowledge Center - Using the IBM Spectrum LSF Resource Connector.”
https://www.ibm.com/support/knowledgecenter/en/SSWRJV_10.1.0/1sf_
welcome/1lsf_kc_resource_connector.html.

[4] “s3fs-fuse/s3fs-fuse: FUSE-based file system backed by Amazon S3.”
https://github.com/s3fs-fuse/s3fs—-fuse.

[5] “kahing/goofys: a high-performace, POSIX-ish Amazon S3 file system written in Go.”
https://github.com/kahing/goofys.

[6] S. Agostinelli, J. Allison, K. Amako, and et al., Geant4, A Simulation Toolkit, in NIM A 506: 250-303,
2003.

[7] T. Aso, A. Kimura, S. Kameoka, and et al., Geant4 based simulation framework for particle therapy
system, in Nucl. Sci. Symp. Conf. Record. NSS’ 07. IEEE: N60-1, 2007.

[8] “CIFAR-10 and CIFAR-100 datasets.”
https://www.cs.toronto.edu/~kriz/cifar.html.

[9] “TensorFlow: Large-scale machine learning on heterogeneous systems.”
https://www.tensorflow.org.

