
P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Improving efficiency of analysis jobs in CMS

Leonardo Cristella*†

Università e INFN Bari, Bari, Italy
E-mail: leonardo.cristella@cern.ch

Data collected by the Compact Muon Solenoid experiment at the Large Hadron Collider are
continuously analyzed by hundreds of physicists thanks to the CMS Remote Analysis Builder and
the CMS global pool, exploiting the resources of the Worldwide LHC Computing Grid. Making
an efficient use of such an extensive and expensive system is crucial. Supporting a variety of
workflows while preserving efficient resource usage poses special challenges, like: scheduling
of jobs in a multicore/pilot model where several single core jobs with an undefined run time run
inside pilot jobs with a fixed lifetime; avoiding that too many concurrent reads from same storage
push jobs into I/O wait mode making CPU cycles go idle; monitoring user activity to detect low
efficiency workflows and provide optimizations, etc. In this contribution we report on two novel
complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis
jobs: automatic job splitting and automated run time estimates. They both aim at finding an
optimal value for the scheduling run time. We also report on how we use the flexibility of the
global CMS computing pool to select the amount, kind, and running locations of jobs exploiting
remote access to the input data.

International Symposium on Grids & Clouds 2019, ISGC2019
31st March - 5th April, 2019
Academia Sinica, Taipei, Taiwan

*Speaker.
†on behalf of the CMS collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:leonardo.cristella@cern.ch


P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

1. Introduction

The analysis workflow of data collected by the Compact Muon Solenoid (CMS) experiment
[1] at CERN involves computational and data intensive steps: from data processing, through Monte
Carlo simulation production, to user analysis tasks. The latter is accomplished via an analysis work-
flow management tool: the CMS Remote Analysis Builder (CRAB). CRAB focuses on providing
the capability to execute analysis tasks to several hundred unique users per month via the resources
of the Worldwide LHC Computing Grid (WLCG). A scale of 40,000 simultaneously running jobs
and a daily completion rate of 500,000 analysis jobs have been achieved (Fig. 1). This contribution
describes the current efforts in CRAB to improve CPU utilization and scalability, and reduce user
workflow turnaround times without requiring any modifications of user applications [2]. Strate-
gies, concepts, details, and operational experiences are discussed, highlighting the pros and cons
and showing how such efforts have helped to improve the computing efficiency in CMS.

~40k concurrently running jobs ~3.5M jobs/week = ~500k jobs/day

Figure 1: Number of concurrently running analysis jobs (left) and number of completed analysis
jobs per week (right) for a 12 months period.

2. CMS Computing on the Grid

2.1 Compute resource provisioning

The Glidein workload management system (WMS) [3] acquires and provides the compute
nodes on which CMS payloads are executed, made available as execution slots in a Vanilla Universe
HTCondor [4] pool, referred to as the CMS Global Pool [5, 6]. From the infrastructural point of
view, a data processing workflow goes through a few sequential steps:

• Two specific workload management tools - WMAgent for central data processing and Monte
Carlo production jobs, and CRAB for user jobs - submit HTCondor payload jobs based on
users requests.

• Based on idle jobs in the global pool, the GlideinWMS sends pilot jobs, called glideins, to
the Grid sites as needed. An HTCondor startd which joins the CMS Global Resource Pool
is run by each pilot and pulls jobs from the global queue, which contains both WMAgent
and CRAB payloads. Usually a pilot acquires 8 cores for 48 hours which are dynamically

1



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

allocated (and reallocated as freed up) to several multi/single-core jobs until the end of its
lifetime via HTCondor match-making.

The WLCG resources are heterogeneous and in this provisioning model CMS takes own-
ership for all scheduling issues of the global pool, like fragmentation due to variable number
of multi/single-core jobs of different length (WMAgent usually requiring more resources than
CRAB), waste of CPU time because of lack of proper pilot jobs utilization, etc. The resource
pool defined by such architecture is well structured with explicitly defined building blocks, pro-
viding hooks for optimization at the cost of making inefficiency more visible. More details can be
found in [5] and [6]. For central data processing and simulation tasks, workflows are larger, well
structured and with more top-down control, which makes them less exposed to inefficiency sources.
In the user analysis domain instead, most workflows are smaller, the number of workflows is much
larger and more diverse than in central production, making them more prone to inefficiencies.

2.2 Analysis jobs management: CRAB

CMS users often need to run an analysis application over a large set of data (called a dataset).
CRAB is the software system that turns such request into a set of jobs executed on the grid, referred
to as a task. CRAB prepares, submits, monitors and bookkeeps the task execution and transfers
and register output files. Fig. 2 provides an overview of the CRAB architecture which is further
explained in ref. [7]. The process by which CRAB breaks a monolithic user request into a set of po-
tentially thousands of jobs is called splitting and happens on the TaskServer component of CRAB.
Each job specifies the information required to execute a portion of the task on a single worker
node. Users can specify one among a few available splitting algorithms, for example ‘EventBased‘
or ‘FileBased‘. Then a Directed Acyclic Graph (DAG) is created by the TaskServer for each task
and submitted to one of a set of HTCondor schedulers where it is executed under control by the
HTCondor DAGMAN, a high-level scheduler with the role of submitting grid jobs to the worker
nodes. Eventually, job output files are moved from the local storage of the job execution site to the
user preferred final storage location by the Asynchronous Stage Out (ASO) service, recording files
metadata in the CMS Dataset Bookkeeping System (DBS) which makes the task output usable as
input for further processing.

3. Scheduling optimization

Three independent lines of development have been pursued in order to improve the resource
usage efficiency:

• Automatic Splitting: Few hours is the optimal runtime for jobs in WLCG. Jobs which are
excessively long can get killed by an expiring pilot or a random glitch in the infrastructure,
resulting in an inefficient distribution of work, delayed completion of the task, or waste of
resources. Jobs excessively short cause unnecessary loads on the infrastructure and suffer
from startup overheads. The Automatic splitting does not require the user to specify any
splitting parameter and optimizes jobs for optimal time duration.

2



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

• Time Tuning: The 48 hours pilot slot is allocated with several payload jobs having different
run times. The amount of the available processing time left unused is wasted, therefore, a
good estimation of the job running time is essential for an efficient utilization of the slots.
The dynamic tuning of this parameter based on finished jobs of the same task increases the
utilization efficiency by optimizing the jobs to pilot slot allocation

• Overflow: Jobs are normally assigned to sites that host the input data that each job requires.
Several factors such as data popularity, number of local users, etc., generate an uneven work-
load among the grid sites resulting in long job queues. Since data can be read also remotely
via the XrootD [8] service, albeit with a somewhat smaller CPU efficiency, the overflow sys-
tem optimizes the jobs scheduling across sites by transferring work queued for execution to
nodes that are less busy elsewhere on the grid.

3.1 Automatic Splitting

3.1.1 Theory

Before this optimization was introduced, each task was processed according to a single static
DAG specifying a fixed set of jobs. The splitting parameters configured manually by the users
often resulted in thousands of very short jobs (see Fig. 3a) which would run for only a few minutes,
causing an excessive infrastructure load, or in a few very long jobs delaying the completion of the
task. With the automatic task splitting a series of DAGs is generated with different granularity at
each step, allowing the task to be segmented more efficiently into a smaller number of jobs of more
uniform length:

Figure 2: Overview of the CRAB architecture.

3



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

(a) Analysis jobs median and average run time (b) Analysis jobs run time distribution

Figure 3: Analysis jobs run time.

• A probe DAG runs a few short jobs (typically 5) to estimate time, memory and disk storage
requirements. Some of these parameters depends on the worker node the jobs run on and
represent the only machine benchmark in use. Splitting parameters are computed based on
the processing time per event determined from the probe output. The nominal target run time
is 8h per job.

• A processing DAG is created to run the jobs produced by splitting the task according to the
computed parameters. These jobs are assigned a fixed maximum run time; jobs that run out
of time before completing the assigned work are gracefully terminated. The remaining data
will be processed in the next step.

• Up to 3 tail DAGs (one when 50% of the processing DAG is done, one at 80% and one up to
the end) re-split and execute failed jobs and remaining work from the processing step.

3.1.2 Practice

The automatic splitting approach has required significant operational changes. The previous
user-driven splitting process was run on a single central server, before jobs were instantiated and
submitted, therefore it was easy to access logs and to replay actions for troubleshooting and debug-
ging. In the new model splitting is done separately for each task in the fifteen HTCondor schedulers
that are currently used by CRAB. Changes continue to occur over the lifetime of each task and are
dependent on real-time changes in performance across the grid, making problems difficult to repro-
duce. Consequently, we have adopted an incremental deployment process to allow users to become
familiar with each feature and allow us to identify and correct any problems before moving on to
the next stage.

The current implementation has been in production since February 2018. Users are encouraged
but not forced to use it and consequently the current adoption is low, about 2%. So far only a few
minor issues have been faced. Extending usage requires an education campaign, hence substantial
effort. Fig. 3b shows the analysis job run time distribution. A clear peak at eight hours is visible,
which corresponds to the default value for the automatic splitting mechanism.

4



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

3.2 Automatic Tuning

Both Time Tuning and Overflow have been implemented using the same underlying mechanism
called Automatic Tuning, where an automated process periodically monitors the requirements of
jobs idle in the HTCondor queue and modifies them according to predefined rules to better fit
available execution resources. This makes it possible to optimize the initial requirements in light
of actual job performance and sites availability.

It is frequently necessary to choose between collecting additional global information, so that
the tuning process can better optimize the job scheduling, and making changes in the HTCondor
schedulers based on the information already collected. It is also important to minimize work done
on the scheduler to avoid interfering with the job matching and starting process.

Our approach was to use a central process to collect information and generate statistics based
on a feed of HTCondor classAds to Elastic Search, where the global view is updated every 12
minutes. A lightweight script then runs on each scheduler and does the actual classAd remapping
locally via the HTCondor JobRouter, which scales much better than a massive condor_qedit.

This strategy has been implemented for central data processing and simulation tasks, in which
the workflows are larger and there is more top-down control. In the user analysis domain, instead
most workflows are smaller, the number of workflows is much larger and more diverse than in
central production, making it more difficult to identify and correct inefficiencies. The process of
gathering performance data can be slow compared to the running time of a given DAG, changes in
system parameters take time to propagate and recovery from configuration errors is difficult. These
factors led us to make changes in a measured and incremental fashion.

3.2.1 Time Tuning: Theory

Unless automatic splitting was used, jobs are initially submitted to HTCondor with a very
rough estimate of the needed walltime in the MaxWallTime (MWT) classAd attribute specified for
all jobs in a task. HTCondor terminates any job that reaches this value. It is set at the time of
submission and persists until the job is either completed or terminated. The measured median
running time for analysis jobs is about 30 minutes, however most jobs are submitted with the
default MWT value of 20 hours since run time can vary considerably among the jobs in a task as
a result of variations in computational requirements, assigned hardware and I/O latency, therefore
users must set a relatively high MWT to allow all jobs to complete. This is problematic because
HTCondor will not schedule jobs in pilot slots which do not have the full MWT remaining for
available execution time. It is therefore likely that multicore pilot slots remain unused, resulting in
wasted resource usage.

Consequently, we have introduced a new classAd attribute called EstimatedWallTime (EWT).
EWT is used to schedule jobs, while the originally defined MWT is used to kill jobs and purge
them from the queue. Jobs can be scheduled in any slot which has at least the EWT time remaining.
MWT is still set as before, but a job can be initiated even if the MWT exceeds the available time
in the slot. If the EWT is exceeded but time remains in the pilot slot, as is usually the case, the job
continues to run. If a job exceeds, either the available time in the slot, it will be terminated and
automatically resubmitted. We have achieved an accurate enough estimation of EWT such that this
affects only a small fraction of the jobs.

5



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

3.2.2 Time Tuning: Practice

An initial value of EWT for a task is computed as soon as at least one job is completed and
EWT is then dynamically updated every 10 minutes. EWT is set at the 95th percentile of the dis-
tribution of running times for the jobs in a task that have been completed. This statistical approach
has limitations: while some CRAB tasks result in thousands of jobs, most have a few hundred or
fewer jobs, so the estimate of running time may be imprecise. The estimate may also be biased
because the first jobs which complete in a task and are used for the initial run time estimate are
likely to be those which need to process less data or are assigned to particularly efficient nodes. To
minimize this error, the estimate derived from the distribution of completed jobs is increased by
an empiric correction factor dependent on the number of jobs. The EWT classAd attribute is then
added to each job and periodically updated by the JobRouter. Typically, EWT stabilizes to one hour
or less while pilot jobs run for 48 hours. If a job is still running when the pilot shuts down when
reaching the end of its lifetime, the job is terminated and automatically rescheduled by HTCondor.
CPU time used on a job which is terminated is wasted. The time tuning algorithm tries to minimize
the combination of CPU time wasted on terminated jobs and the CPU wasted on unused pilot slots
(see Fig. 4).

Automated tuning of the requested job running time was rolled out in production in Spring
2018. To minimize the possibility of interference with ongoing analyses of LHC Run2 data, we
used a conservative correction factor for EWT under which 95% of jobs still ran in less than EWT.
An additional 4% of jobs exceeded the EWT but completed before the pilot expired. Only 1% of
all jobs reached the pilot end of life and were restarted by HTCondor; we found that all such jobs
completed after a single restart. Fig. 5 illustrates how this substantially improved utilization of the
final portion of the pilot slot. Jobs which were not time-tuned could only be scheduled for pilot
slots which had more than 21 hours of lifetime remaining, while jobs whose time requirement had
been tuned by the JobRouter were evenly distributed across the duration of each slot.

3.2.3 Overflow: Theory

Network latency is lower and bandwidth higher between storage and computing resources
located at a common site. For this reason, jobs are preferentially submitted to sites hosting the

Figure 4: Multicore pilots Time fragmentation - free slots occupied by analysis jobs.

6



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

Figure 5: Pilot execution slot occupancy vs. remaining pilot life time. The bins above 48h represent
the small fraction of pilots which run at sites allowing long running times

required input data in local storage. However, sites hosting popular datasets usually receive a much
larger number of job requests than the available CPU slots, leading to long job waiting times.

The CMS global XrootD data federation [8] allows jobs to access data remotely through the
WAN, at the cost of a modest loss in CPU efficiency due to increased I/O latency. Properly schedul-
ing such jobs while considering the limitations on the WAN network between sites is a complex
task. We have attempted a simple approach, based on the JobRouter, that can enable remotely-
reading jobs by dynamically expanding the list of potential job execution sites (overflow) beyond
the sites hosting the input data.

3.2.4 Overflow: Practice

We have initially addressed the most pressing need for user analysis: Tier-1 sites often host
interesting datasets, however the share of computing resources available for analysis jobs at such
sites is only 5%. We have enabled jobs initially scheduled to be executed at Tier-1 sites to run
at Tier-2 sites located in the same country. This regional strategy makes additional computing
resources available while minimizing the increased latency and network load that would result
from international access. A typical situation over a 10-days period is illustrated in Fig. 6. The
top plot shows the number of idle analysis jobs at the French Tier-1 site, the bottom plot shows

7



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

Figure 6: Top: number of idle jobs at the French tier-1 site. Bottom: number of jobs overflown
from Tier-1 to Tier-2 sites in France.

the number of running jobs at French Tier-2 sites which have been overflown. A clear correlation
between the trends in the two plots is evident, the second being shifted in time with respect to the
first because of infrastructure delay.

4. Conclusions and directions for further work

The goal of CRAB is to provide CMS researchers with the ability to exploit the distributed
worldwide resources of the worldwide LHC computing grid to execute analysis tasks ranging from
simple to massive in scope. Complex tasks need to be split into individual jobs that can be run in
the few hundred thousand CPU cores available worldwide. Optimizing the performance of such a
complex network of resources requires making inferences about the needs of computational tasks
based on limited sampling of the code and data while simultaneously adapting to real-time changes
in available resources and network conditions. Updates to the system must be introduced in an

8



P
o
S
(
I
S
G
C
2
0
1
9
)
0
1
5

Boosting the efficiency of analysis jobs in CMS Leonardo Cristella

incremental manner to minimize disruption of ongoing research. Effective monitoring of many
aspects of system performance is essential to identify and correct problems at an early stage.

Meeting the computational requirements of researchers in high energy physics is a daunting
task. While CRAB has made significant advances, our goal is to continue to improve performance,
efficiency and user friendliness. This will require the application of new strategies including local
control, network aware scheduling and machine learning analytics.

References

[1] The CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3, S08004 (2008), doi
10.1088/1748-0221/3/08/S08004.

[2] T. Ivannov et al., “Improving efficiency of analysis jobs in CMS”, in press.

[3] I. Sfiligoi et al., “The Pilot way to grid resources using GlideinWMS”, 2009 WRI World Congress on
Computer Science and Information Engineering, doi 10.1109/CSIE.2009.950.

[4] D. Thain, T. Tannenbaum and M. Livny, “Distributed computing in practice: the Condor experience“,
Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-356,
February-April, 2005. https://research.cs.wisc.edu/htcondor/index.html

[5] J. Letts et.al., “Improving the scheduling efficiency of a global multi-core HTCondor pool in CMS”,
in press.

[6] A. Perez-Calero Yzquierdo et al. “Exploring GlideinWMS and HTCondor scalability frontiers for an
expanding CMS global pool”, in press.

[7] M. Mascheroni et al., “CMS distributed data analysis with CRAB3”, 2015 J. Phys.: Conf. Ser. 664
062038.

[8] J. Balcas et al., “HTTP as a data access protocol: trials with XrootD in CMS?s AAA project”, 2017 J.
Phys.: Conf. Ser. 898 062042.

9


