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Machine Learning (ML) has proven to be of great value in a variety of Software Engineering
(SE) tasks to conduct, e.g., software defect prediction and estimation and test code generation.
To accomplish these tasks, software datasets (i.e. collections of the various modules, such as files
and classes, with features, such as software metrics and defective data) have to be gathered and
properly preprocessed before the application of ML techniques.

In SE practice, software datasets may lack some features’ classification data, e.g. defective data
are not included being difficult to collect in new projects or in projects with partial historical data.
These datasets are called unlabelled datasets and are the vast majority of software datasets. The
extraction of the complete set of features (defectiveness included) and the classification of the
various instances imply effort and time.

In literature, there exist various approaches to build a prediction model on unlabelled datasets that
entail a high number of time-consuming permutations. Cloud computing infrastructure, GPU-
equipped resources and adequate ML framework can give the chance to overcome this problem.
In this study, we are going to present the usefulness of the Clustering, LAbeling, Metric selec-
tion, Instance selection approach in high energy physics by applying them to a Geant4 software
unlabelled dataset as a case study; by implementing models in different available frameworks,
such as TensorFlow and Keras; and by running them in Java, Python and R. We intend to reduce
the distance between theory and practice by providing strengths and limitations of the considered

frameworks to enable users to assess suitability for their requirements.
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1. Introduction

Software analysis is of vital importance in the assessment of software characteristics. It is
usually based on software measurement and techniques derived from both statistics and Machine
Learning (ML).

ML has been widely adopted in the field of Software Engineering (SE), whose tasks can be
formulated as learning problems and approached through learning techniques. Over time, ML
has proven to enable computer engineers e.g. to predict defects [1] in software [2] and generate
source test code [3], offering a viable alternative to existing approaches in addressing SE issues.
To accomplish these tasks, ML techniques normally require labelled datasets that are collections of
features (like software metrics [1]) with various instances - i.e. modules (such as files and classes)
- opportunely classified according to the considered task. These datasets have to be gathered and
properly preprocessed before the application of ML techniques: typical data preprocessing opera-
tions may include replacement of missing values and/or removal of inconsistencies (like the total
number of lines in a file is smaller than the number of code lines in a file).

Figure 1 shows an example of a labelled dataset composed of N modules and M metrics. Each
cell <module, metric> contains the metric value of the specific module. Among the metrics, there
is at least one that can be used to classify each module for example in terms of defectiveness,
as shown in Figure 2: Figure 2a shows a module identified as clean (i.e. no defects), Figure 2b
shows a module identified as buggy (i.e. with defects) and Figure 2c shows a module identified as
unlabelled (i.e. no information available coded with the ? symbol). Defect prediction models are
trained with the labelled modules and also tested with the unlabelled modules, i.e. modules whose
defectiveness is unknown.

Metric| |Metricy|Metricy |Metric. |Metricy
module;
module,
modules
module.__ ?
moduley ?

Figure 1: Sheet of Software Labelled Dataset.

module iean—iabelled m mOdulebuggyflabelled m moduleyyapeiled IIII

(a) Clean Module (b) Buggy Module (c) Unlabelled Module
Figure 2: Example of Module Classification for Defect Prediction.
In SE practice, software datasets may lack some features’ classification data, such as the soft-

ware module defectiveness, which are mandatory for the application of supervised learning tech-
niques and are not easy to find either for new projects or in projects with partial historical data.
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These datasets are called unlabelled datasets and they are the vast majority of software datasets.
Figure 3 shows an example of an unlabelled dataset composed of N modules and M metrics, where
all modules are not classified. The extraction of the complete set of features (defectiveness in-
cluded) and the classification of the various instances imply effort and time, penalizing a real ap-
plication of ML techniques to predict modules defectiveness.

Metricy |Metricy|Metricy |Metric.. |Metricy
module; ?
module, ?
modules ?
module . ?
moduley ?

Figure 3: Sheet of Software Unlabelled Dataset.

In the last decade, unlabelled datasets have been explored with the purpose of conducting anal-
ysis and predictions [4, 5]. In literature, various approaches exist to build a prediction model on
unlabelled datasets, such as cross-project defect prediction [6], expert-based defect prediction [5]
and Clustering, LAbeling, Metric selection, Instance selection (CLAMI) [7]. All these approaches
present some limitations mainly related to the dataset characteristics, the need of human experts
and the selection of metrics thresholds. In this study, we have chosen CLAMI, because it is inde-
pendent on the metrics thresholds, it does not rely on expert software knowledge and can be easily
automated.

The resulting prediction models entail a high number of permutations that lead to a greater re-
sources’ consumption. Cloud computing infrastructure, GPU-equipped resources and adequate ML
framework can constitute a helping hand to overcome this problem. Therefore, we have decided to
explore the adoption of ML framework on (also GPU-equipped) cloud computing infrastructure to
determine the best models according to intrinsic ML evaluation indicators, such as Accuracy.

In this study, we are going to present the usefulness of the CLAMI approach in high energy
physics (HEP) by applying it to a Geant4 [8] unlabelled dataset as a case study and implementing
models in different available frameworks. We have evaluated frameworks, such as TensorFlow [9]
and Keras [10], and running them in Java, Python and R, by considering four aspects: extensibility,
hardware utilization, speed [11] and their learning curve. Figure 4 shows the learning curve for
the various frameworks we have experimented: Weka [12] is the easiest to use, while Theano [13]
requires more expertise.

Due to the lack of a comprehensive study about practical aspects of software analytic models,
we aim at providing a procedure to perform software defect prediction in a scientific environment
in order to minimize human effort. Furthermore, we intend to reduce the distance between theory
and practice by providing strengths and limitations of the considered frameworks to enable users
to assess suitability according to their requirements.

The reminder of this paper is organized as follows. Section 2 presents the background in this
context. Section 3 describes the experimental settings of this study. Section 4 discusses the results.
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Figure 4: ML Framework Learning Curve.

Finally, Section 5 draws some conclusions and provides recommendations for further research.

2. Related Works

Computer scientists have tried to tackle the issue of building defect prediction models on new
software projects or projects with limited historical data. In the following some approaches are
provided.

Nam et al. [7] proposed CLAMI technique with the aim of automatizing defect prediction on
unlabeled datasets by using the magnitude of metric values. Their approach consisted of 4 steps:
Clustering of the instances of the unlabeled dataset; LAbeling of the obtained clusters in buggy
or clean; Metrics selections based on the metric violation scores and, finally, Instance selection.
By testing CLAMI on seven open source projects’ datasets, the authors showed that it obtained
promising prediction performance.

Catal et al. [4] explored two fault prediction approaches. The first one is a two stage approach
consisting of clustering and checking against the metrics thresholds. The second approach uses the
metrics thresholds standalone to identify the fault-prone and not fault-prone software modules. The
authors concluded that the second approach was easier to conduct and still effective. The metrics
thresholds were determined based on ’Experience and Hints from Literature’, past defect prone
modules and analysis of past version of the project.

Zhong et al. [5] proposed a clustering and expert-based approach. The first step consists of
clustering software modules into groups by using some clustering techniques such as k-means, the
second step involves software quality experts that labels each cluster as either fault-prone or not
fault-prone based on their domain knowledge and data statistics.

Seliya et al. [14] introduced a semisupervised clustering scheme for software quality analysis
of program modules without defect data. They employed K-means clustering method and showed
that this approach helped experts in making better prediction with respect to predictions obtained
by unsupervised learning algorithm.
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Deshmukh et al. [15] tackled the problem of using unlabeled data in transfer learning. The
proposed algorithm leverages partially labeled training datasets that consist of a small number of
labeled instances and a large number of unlabeled instances. The solution proposed is a kernel and
graph Laplacian based approach which is demonstrated to improve prediction as much as 5.9% on
the sample dataset.

In this study, we have chosen the CLAMI approach because it is independent on the metrics
thresholds, it does not rely on expert software knowledge and can be easily automated.

3. Experimental Settings

This study has been conducted by following a process made up of five steps to follow after
identifying the unlabelled datasets and the ML techniques. Our process requires two inputs and
provides two outcomes.

Input :

1. U = set of unlabelled instances

2. C = set of ML techniques
Process :

1. Repeat 2-5 T times for each u € U to conduct P predictions

2. Randomly split dataset in training (67%) dataset (with labelled defective instances) and
test (33%) dataset

3. Construct classifier by applying ¢ € C to training dataset
4. Assess classifier

5. Predict test dataset
Output :

1. Average I (I = set of performance indicators)

2. Test dataset prediction

3.1 Input sets

The software unlabelled datasets and the ML techniques are the input to our process.

The unlabelled datasets derive from the Geant4 [8] software - a toolkit for the simulation of the
passage of particles through matter. For this software, effort has been dedicated to collect software
metrics for the different modules and 34 software releases [16], and to analyse them with statistical
methods [17].

Several software metrics unlabelled datasets have been built by using Imagix 4D tool [18].
Software metrics are a quantitative measurement that assigns numbers to attributes of the measured
module [19]: an attribute is a property of a module, e.g. size. There are several different families
of software metrics. Those that are measured by the tool belong to size (e.g., comment ratio and
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lines of code), object orientation (e.g., decision depth and class coupling from Chidamber and
Kemerer metric suite [20]) and complexity (e.g., McCabe cyclomatic complexity [21] and Halsted
complexity [22]) categories.

For this study, we have considered the same set of modules (i.e. classes) over the various
Geant4 releases. Table 1 shows the characteristics of the major release 10 of Geant4 at class level.
The percentage of buggy instances is not available (NA) since their datasets are unlabelled.

Release | #Classes | Buggy (%) | #Metrics
10.4.0 482 NA 66
10.2.3 482 NA 66
10.1.3 482 NA 66
10.0.4 482 NA 66

Table 1: Summary of the Geant4 Datasets for the Major Release 10.

In relation to the ML techniques, we have considered the ones used in the SE field according
to existing literature [23]. Focusing on defect prediction problem several ML techniques have been
investigated: AdaBoost (AB) [24], Boosted Logistic Regression (BLR) [25, 26], J48 [27], Cost-
Sensitive C5.0 (C5.0 Cost) [28] and Logistic Model Tree (LMT) [29] as classification techniques;
Multilayer Perceptron (MLP) [30], Support Vector Machines with Radial Basis Function Kernel
(SVM Radial) [31], Partial Least Squares (PLS) [32], Boosted Tree (BT) [33] and Random Forest
(RF) [34] as classification and regression techniques.

3.2 Output sets

The process outcomes are the average of performance indicators and the prediction on test
datasets.

Each indicator can be defined in terms of: True Positive (TP) i.e. all the instances predicted as
buggy that are actually buggy; True Negative (TN) i.e. all the instances predicted as clean and that
are actually clean; False Positive (FP) i.e. all the instances predicted as buggy and that are actually
clean and finally, False Negative (FN) i.e. all the instances predicted as clean and that are actually
buggy.

As performance indicators we have considered Accuracy and Kappa statistic:

TPATN . it : : : :
TPrrprTNTEN. it 1s the percentage of instances correctly classified as either

buggy or non-buggy (i.e. clean).

e Accuracy =

Accuracy—randomAccuracy (TN+FP)«(TN+FN)+(FN+TP)x(FP+TP)
1—randomAccuracy AccuracyxAccuracy

Kappa statistic [35] compares the observed accuracy with the expected accuracy and its value

e Kappa= with randomAccuracy =

€ [0,1]. If Kappa statistic € [0.81, 0.99], then the value indicates an almost perfect agree-
ment.

Concerning the prediction on test datasets, it can be used to identify the piece of code that may
contain problems. Furthermore, this information can be checked against existing documentation.
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3.3 Process

Our research procedure (summarized in Figure 5) aims at creating a software defect prediction
model based on supervised learning techniques starting from an unlabelled dataset.

Test Dataset

Training Dataset
(CLAMI) s

(cLAMI)

C = {AdaBoost, Boosted Logistic Regression, Random Forest, ... }

L W

I = { Accuracy, Kappa, ...}

Metric1 | Metric2 | Metric3
Module 1 B
Module 2 C

Figure 5: Research Procedure Summary.

We have followed the CLAMI approach [7] that is composed of various steps: splitting the
unlabelled dataset in training and test, applying unsupervised clustering and labelling to the training
dataset, removing all noisy metrics and instances and, finally, constructing the models by using
supervised learning techniques to predict unlabelled instances.

In the clustering phase, we have first identified metric values that are greater than a specific
cutoff threshold (e.g. the median value) and then determined the number of metrics K for each
instance whose values are greater than the given metric threshold. In the labelling phase, we have
categorized the clusters according to their K values and then divided them into two groups [36]:
a bottom half for the clean instances, and a top half for the buggy instances. The instances in the
top half cluster are labelled as buggy since the instances with larger values on all metrics are more
likely to be defective [25, 37, 38].

Figure 6 shows an example of a training dataset with 7 modules and 6 metrics. An example
of a cutoff threshold is given by the Median; value, where j is the metric index. The yellow cell; ;
represents the j-th metric value of i-th module greater than Median;, where i is the module index.
For reasons of simplicity, the cutoff threshold in the example above is the median of metric values
because we made the assumption that instances are clustered 50% in buggy and 50% in clean,
ignoring the actual data distribution. However, in our study, we have considered 9 different cutoff
thresholds to decide the higher metric values, each threshold is related to the p-th percentile with
p € 10, 20, ..., 90.

K represents, for each instance, the number of metrics whose values are greater than the me-
dian for each metric. Figure 7 shows in different colours the four clusters defined according to the
K values. The created clusters are then split into two groups:

1. Clean (C) for K € {0,1,2} (a bottom half)
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2. Buggy (B) for K=3 (a top half)

Modules|Metricy|Metricy | Metrics|Metricy|Metrics | Metricg

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

1 7 9 21 13 9 ?
Median| 11 | 10 | 15 | 8 | 8 |

Figure 6: Example of Unlabelled Training Dataset with the Metrics’ Median.

Modules|Metricy |Metricy, |Metricy|Metricg |Metrics |Metricg| K
A 10 11 4 6 8 ? K=1
D 23 10 15 14 10 ? K=3
E 15 17 4 8 5 ? K=2
F 9 10 9 6 3 ? K=0
G 11 13 15 5 8 ? K=1
H 14 10 17 9 0 ? K=3
1 7 9 21 13 9 ? K=3

Figure 7: The K Values for the Various Modules.

In the cleaning/selecting phase, all the metrics that violate the defect proneness tendency are
removed [36]. A violation occurs e.g. when an instance has been labelled as buggy but one of its
metric value is not greater than the metric threshold, or when it has been labelled as clean but one
of its metric value is greater than the metric threshold.

In Figure 8, the gray cell; ; represents the metrics whose value violates the defect-proneness
tendency:

e D is Buggy, but Metric, = 10 is not greater than Mediany
e E is Clean, but Metric; = 15 is greater than Median;

We have selected metrics by relying on the metric violation scores (MVS). MVS; is the ratio
between the number of violations in the j-th metric and the number of metric values in the j-th
metric. Figure 9 shows the MVS values of the various metrics.

Metrics with the minimum MVS are selected for the training dataset. Figure 10 shows the
resulting training dataset after metrics and instance selections. The test dataset includes the same
selected metrics.



Machine Learning Techniques for Software Analysis of Unlabelled Program Modules Elisabetta Ronchieri

Modules|Metric||Metrico |Metricy|Metricy | Metrics|Metricg

A 10 11 4 6 8 C

D 23 10 15 14 10

E 15 17 4 8 5 C

F 9 10 9 6 3 C

G 11 13 15 5 8 C

H 14 10 17 9 0

I 7 9 21 13 9 -
Median| 11 | 10 | 15 [ 8 | 8 |

Figure 8: The Metrics Violation - Metric;, Metric, and Metrics violate defect-proneness tendency.

Modules|Metrici|Metricy | Metrics|Metrics|Metrics|Metricg
A 10 11 4 6 8 C
D 23 10 15 14 10
E 15 17 4 8 5 C
F 9 10 9 6 3 C
G 11 13 15 5 8 C
H 14 10 17 9 0

mvs | 3 | 5 [ 5 [ 5 1 § |
Figure 9: The MVS values.
Modules|Metricy|Metrics |Metricg

A 6 8 C
D 14 10

E 8 5 C
F 6 3 C
G 5 8 C
H 9 0

Figure 10: The Final Training Dataset - Metric|, Metric, and Metrics have been removed.
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According to CLAMI, the instances with any violated metric values must be removed. This
operation may lead to a dataset without either buggy or clean instances. In this situation, another
MYVS value can be chosen to reiterate the metrics and instances selection and to generate another
training dataset with both buggy and clean instances.

4. Results

The experimental testbed is composed of a physical machine and a virtual machine on the
cloud infrastructure at INFN CNAF [39]. Table 2 shows details about the resources used in this
study. At the time of this study it was not possible to have similar resources in terms of operating
system, CPU numbers and GPU.

‘ Physical Machine Virtual Machine
CPU 2xIntel(R)E5-2640v2 2.00 GHz | 2 x 12 AMD Opteron(TM) Processor 6238
Number of Cores 32 (HT) 16 V CPU
GPU 2 x NVIDIA TeslaK40m
Memory 128 GB RAM 32 GB RAM
Operating System | CentOS Linux release 7.4.1708 Ubuntu Linux release 18.04
Python 2.7.5 3.6.7
R 352
Jupyter-notebook 5.7.8 5.7.4

Table 2: The Resources Characteristics.

The preprocessing activity has been applied to 34 datasets - each one related to the Geant4
software release - composed of the same classes and the same software metrics over the various
releases.

Each dataset has been split in training (67%) dataset and test (33%) dataset. The training
dataset has been preprocessed by considering 11 different cutoff threshold values for 500 times.
On the virtual machine all the datasets have been produced in almost 8 days: in each permutation
374 training datasets and 374 test datasets are generated in almost 23.856 minutes. Figure 11
shows the preprocessing time: eTime — sTime is the time requested to build training and test sets
per permutation.

Figure 12 shows the normalized value of the ratio between the number of buggy instances and
the number of clean instances (RBC) over the 34 Geant4 releases for 9 different cutoff values cal-
culated on the basis of 10-th, 20-th, ..., 90-th percentiles: the greater RBC, the lower the percentile.
A low RBC value identifies classes with higher clean than buggy. We have omitted percentile at 0
and 100 being cause of bias interpretation.

Figure 13 shows the number of the selected metrics over the 34 Geant4 releases for 9 different
cutoff values on the basis of 10-th, 20-th, ..., 90-th percentile: the smaller the number of selected
metrics, the bigger the percentile. The metrics belong to various categories such as size, complexity,
maintainability and object orientation. Over the various datasets, the number of the selected metrics
belongs to the range [45%,77%] with an average selected metrics of 38 out of 66.
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Figure 11: The Preprocessing Time on Virtual Machine.
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Figure 13: The Number of Selected Metrics over the Geant4 Releases.

Techniques per release 1040 and percentile 50

0.6 0.7 0.8 0.9 10

1 1
Accuracy Kappa

AB L —
LMT —s— e —
C5.0Cost —— - ©
5.0 e e .
LE = —
J48 —e— —_——
NE —— : -
CART ——— —a
LDA — —_—
L25VM

T T T T L T T T T
0.6 0.7 0.8 0.9 1.0

Accuracy Kappa
Confidence Level: 0.95

Figure 14: The Comparing Performance Indicators for Ada Boost.
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As ML techniques we have used both classification and regression algorithms with 10-fold
cross validation and we have employed Weka, R, Python-based framework on virtual machine and
TensorFlow 1.13.1 on the GPU-equipped physical machine.

Figure 14 and Figure 15 show the accuracy and Kappa statistic indicators for the Geant4 re-
lease 10.4.0 and the 50-th percentile with a 95% confidence level (i.e. p-value < 0.05), respectively
produced with the Ada Boost classification technique and the Random Forest classification and re-
gression technique. The techniques have been run on the virtual machine obtaining a processing
time of 36 seconds. Kappa statistic provides an almost perfect agreement on the two techniques.

Techniques per release 1040 and percentile 50

00 02 04 06 08 10
1 L 1 1 1 - L L

Accuracy I:(appal
RF e e
BT - -
SWM
CART
KNN
ANN o —
GLM o e
PLS
MLP

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Accuracy Kappa
Confidence Level: 0.95

Figure 15: The Comparing Performance Indicators for Random Forest.

Table 3 shows the best ML techniques on the Geant4 10 major release over the 10-th, 20-th,
..., and 90-th percentiles.

Release 10 20 30 40 50 60 70 80 90 | Type
10.0.4 AB AB C5.0Cost C5.0Cost AB BLR AB LMT AB

10.1.3 LMT AB BLR BLR BLR J48  C5.0Cost LMT BLR

10.2.3 C5.0Cost  C5.0 Cost BLR AB (5.0 Cost BLR BLR LB LB | Class.
10.3.2 AB AB BLR C5.0 Cost BLR C5.0 Cost LMT AB BLR

10.4.0 AB LMT BLR BLR AB AB BLR BLR BLR

10.0.4 RF RF RF BT BT RF RF BT RF

10.1.3 RF RF RF RF RF RF RF RF BT | Class.
10.2.3 PLS RF RF RF RF RF RF RF RF | &
10.3.2 PLS RF RF RF RF RF RF RF SVM Radial | Regr.
10.4.0 RF RF RF RF RF RF RF MLP SVM Radial

Table 3: The Best ML Techniques.

Figure 16 shows the accuracy performance indicator for the Geant4 release 10.4.0 and the 50-
th percentile produced with the Logistic Regression classification technique. It has been run on the

12
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GPU-equipped physical machine by using the TensorFlow library 1.13.1, obtaining a processing
time of 3 seconds with an improvement of a factor 10 compared to the result on the virtual machine.
However, the resources used in this study are different, therefore it is not possible to perform an
actual comparison of the processing time.

Train and Test Accuracy

train accuracy
—— test accuracy

accuracy
[=]
[=1]

0
u

200 400 600 800 000 1200 1400
epoch

Figure 16: The Accuracy Indicator for Logistic Regression - the epoch represents the entire pro-
cessing by the learning algorithm.

5. Conclusions and Discussions

Our results show that Adaboost, Boosted Logistic Regression and Random Forest ML tech-
niques have achieved the best average accuracy over the datasets.

The effectiveness of our procedure in detecting defective instances can be assessed by check-
ing existing software documentation and datasets, such as release notes and software metrics. In
our study, we have shown that our approach can help detect pieces of software that may require
particular attention by combining software metrics datasets, ML techniques and approaches, like
CLAMLI, that address the issue of unlabelled metrics datasets. Furthermore, ML techniques may
be complementary to existing SE tools to address SE issues: SE tools are mainly responsible to
calculate software metrics values or to perform statistical analysis; ML techniques can provide an
objective interpretation of the analysed software just with the use of software metrics datasets and
help to identify metrics that are suitable for a given software release.

What are the pros and cons of using the R or python-based framework? It depends on data,
problem to be solved, hardware available, data preparation time. According to our experience, it is
preferable to start exploring ML techniques by using the easiest framework, like Weka. Later, it is
reasonable to use R and/or scikit-learn. TensorFlow may be helpful to exploit GPU-based systems.

Our approach is based on the CLAMI methodology that enables developers to build a pre-
diction model on unlabelled datasets in an automated manner. Once obtained a labelled training
dataset, one can employ all the other supervised and semi-supervised techniques to detect defective
instances on test datasets. This approach entails a number of selection processes that may affect the

13
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final results. For example, the process of metrics’ selection according to metrics’ violations may
decrease the size of the training dataset and, as a consequence, of the test dataset, penalizing both
performance indicators and prediction.

The advantage of the CLAMI approach with respect to other techniques for unlabeled datasets
is two-fold: firstly, it does not require software experts to determine defective modules or to select
metrics and thresholds’ values to construct both the training and test datasets; secondly, it can be
easily automatized and used by developers without knowing all its details.

Software developers may rely on CLAMI-based software tools to determine which software
modules they are working on need more attention and tests.

Our next steps involve the employment of other approaches, such as CLAMI+, and other clus-
tering techniques, like K-means, to identify the best solution for defect prediction on unlabelled
datasets in HEP software. Moreover, we are going to check our findings against existing docu-
mentation of Geant4 in order to obtain a semi-labelled dataset on which employ semi-supervised
learning techniques.
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