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Studying light-cone (standard) parton distribution functions (PDFs) through Euclidean correla-
tors in lattice QCD is currently a very active field of research. In particular, the parton quasi-
distributions (quasi-PDFs) suggested by Ji have attracted a lot of attention. Quasi-PDFs converge
to their respective standard distributions in the limit of infinite hadron momentum. We explore the
quasi-distribution approach for twist-2 generalized parton distributions (GPDs) in a frequently-
used diquark spectator model. Our analytical expressions of the quasi-GPDs reduce to their cor-
responding standard ones in the large-momentum limit, substantiating them to be practical tools
to predict features of standard GPDs. We illustrate numerical results of quasi-GPDs and of quasi-
PDFs. Our focus is to test how well the quasi-distributions agree with their standard counterparts
for finite hadron momenta. By discussing the sensitivity of our results to model parameters, we
highlight robust features of the quasi-GPDs and quasi-PDFs that one may extract from this model
study. We also discuss moments of quasi-distributions which recently attracted a lot of attention.
Our contribution is based on published work and new results.
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1. Introduction

Quasi parton distributions (quasi-PDFs) put forward by Ji [1] are at the forefront of numerical
calculation of the partonic structure of strongly interacting systems in lattice QCD. They are defined
through purely spatial correlation functions and are thus readily calculable on lattices. Quasi-PDFs
approach their corresponding light-cone counterparts (standard PDFs) in the limit that the hadron
momentum goes to infinity. Here we investigate this new approach to calculate (eight) twist-2
GPDs in a scalar diquark model (SDM) [2, 3]. In this short write-up of the talk, we focus on
the unpolarized quasi-GPD HQ corresponding to the standard GPD H. All the features discussed
subsequently are robust and not specific to this distribution function.

2. Definition of Quasi-GPDs

Analogous to the standard GPDs [4], quasi-GPDs are defined through an equal-time spatial
correlation function [1],

F [Γ]
Q (x,∆;λ ,λ ′;P3) =

1
2

∫ dz3

2π
eik·z〈p′,λ ′|ψ̄(− z

2)ΓWQ(− z
2 ,

z
2)ψ( z

2)|p,λ 〉
∣∣∣∣
z0=0,~z⊥=~0⊥

, (2.1)

where WQ denotes a Wilson line. The unpolarized quasi-GPDs HQ(0/3) and EQ(0/3) are defined
through the choice Γ = γ0/3, the longitudinally polarized quasi-GPDs H̃Q(0/3) and ẼQ(0/3) through
Γ = γ0/3γ5, and the transversely polarized quasi-GPDs HT,Q(0/3), ET,Q(0/3), H̃T,Q(0/3), and ẼT,Q(0/3)

through Γ = iσ j0/3γ5. See Ref. [3] for more details on the definition of quasi-GPDs.
Quasi-GPDs are functions of four kinematical variables: x = k3

P3 , ξ , t (or |~∆⊥|) and P3 (average
3-momentum of hadron). Note that the momentum fraction x differs from k+

P+ that appears for
standard GPDs. Unlike the standard GPDs which extend from −1 < x < 1, the support for the

quasi-GPDs is given by −∞ < x < ∞. We also use the quantity δ =
√

1+ M2−t/4
(P3)2 which shows up

in the relation P0 = δP3.

3. Analytical Results of Quasi-GPDs in Scalar Diquark Model

The quasi-GPD correlator in the SDM reads

F [Γ]
Q (x,∆;λ ,λ ′;P3) =

ig2

2(2π)4

∫
dk0 d2~k⊥

ū(p′,λ ′)
(
/k+ /∆

2 +mq

)
Γ

(
/k− /∆

2 +mq

)
u(p,λ )

DGPD
, (3.1)

where DGPD =

[(
k+ ∆

2

)2
−m2

q + iε
][(

k− ∆

2

)2
−m2

q + iε
][

(P− k)2−m2
s + iε

]
. We quote here

the example of the unpolarized quasi-GPD HQ, defined with Γ = γ0. By using Gordon identities
and before carrying out the

∫
dk0 one obtains

HQ(0)(x,ξ , t;P3) =
ig2P3

(2π)4

∫
dk0 d2~k⊥

NH(0)

DGPD
, (3.2)
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where the numerator reads

NH(0) = δ (k0)2− 2
P3

[
x(P3)2−mqM− x

t
4
− 1

2
δξ t

~k⊥ ·~∆⊥
~∆2
⊥

]
k0

+δ

[
x2(P3)2 +~k2

⊥+m2
q +(1−2x)

t
4
−δξ t

~k⊥ ·~∆⊥
~∆2
⊥

]
. (3.3)

While performing
∫

dk0 via contour integration, one can verify that the position of the k0-poles
never switch half planes. One therefore has the same functional form for the quasi-GPDs for any
x, which implies that all quasi-GPDs and their derivatives are continuous functions of x, unlike the
standard GPDs which have discontinuous derivatives at the cross-over points x =±ξ in the SDM.
(See Ref. [3] for results of all the quasi-GPDs corresponding to the twist-2 standard GPDs.)

4. Numerical Results in Scalar Diquark Model

Details regarding the choice of model parameters can be found in Ref. [2]. Our results dis-
cussed below are largely insensitive to variations of the model parameters [2, 3]. Since most of the
features exhibited by the quasi-GPDs become easier to grasp once one understands the qualitative
behavior of the quasi-PDFs, we begin with discussing the PDFs first.

4.1 Results for Quasi-PDFs
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Figure 1: Left panel: Quasi-PDF f1,Q(0) as a function of x for different values of P3. Black curve represents
the standard PDF f1. Right panel: Deviations at large x made clearer through a relative-difference plot
between f1,Q(0) and f1 as a function of x for different values of P3.

The left plot in Fig.1 shows the unpolarized quasi-PDF f1,Q(0), which is the forward limit
of HQ(0). One observes that for larger values of P3, there is a good agreement between quasi
and standard PDF over a wide range of x. However, considerable discrepancies appear as x→ 0
and x→ 1. As pointed out in [2], the discrepancy at small x can be expected since, contrary to the
continuous nature of the quasi-PDFs, the standard PDFs are discontinuous at x= 0 in the SDM. The

relative difference, defined as R f 1(0)(x;P3) =
f1(x)− f1,Q(0)(x;P3)

f1(x)
, better illustrates the discrepancies at

large x and is shown in the right panel of Fig.1. At P3 = 2 GeV, for instance, one can hardly go
above x = 0.8 for the relative difference to stay below 50%.

We repeat that the two momentum fractions k3

P3 and k+
P+ are different and that they cannot be

related in a model-independent way. (For the rest of this sub-section we denote the former by x̃.)
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Figure 2: Left panel: Momentum fraction x̃ as a function of x as given in Eq. (4.1) in cut-graph approach, for
different values of ms. Right panel: Impact of difference between x and x̃ as given in Eq. (4.1) in cut-graph
approach for f1,Q(0). Note that the curves for x̃ 6= x go to 0 for x→ 1, like the standard distributions do.

However, by considering the cut-graph approximation in the SDM, one arrives at the relation

x̃ = x+
1

4(P3)2

(~k2
⊥+m2

s

1− x
− (1− x)M2

)
+O

(
1

(P3)4

)
. (4.1)

Eq. (4.1) shows that the difference between x̃ and x is a higher-twist effect. But most importantly,
due to the 1/(1− x) factor, one finds that x̃→ ∞ as x→ 1, which implies very large differences
between the two momentum fractions at large x. This fact is highlighted in the left plot of Fig. 2.
One can therefore speculate that the considerable discrepancies between the quasi-distributions
and the corresponding standard distributions at large x are mostly caused by the (huge) discrepancy
between x̃ and x. The plot on the right panel of Fig. 2 shows that by accounting for such a higher-
twist “correction” in the cut-graph analysis, f1,Q(0) indeed provides, at (very) large x, a better
agreement with the standard PDF.

4.2 Results for Quasi-GPDs

ms=0.7 GeV

mq=0.35 GeV

Δ⊥= 0 GeV ξ= 0.1
H

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

0.01

0.02

0.03

0.04

HQ (0)

ms=0.7 GeV

mq=0.35 GeV

ξ=0.01

H

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

-0.010 -0.005 0.005 0.010
x

0.005

0.010

0.015

HQ (0)

ms=0.7 GeV

mq=0.35 GeV

ξ=0.4

H

P3=1 GeV

P3=2 GeV

P3=3 GeV

P3=4 GeV

-0.4 -0.2 0.2 0.4
x

0.005

0.010

0.015

0.020

0.025

HQ (0)

Figure 3: Left plot: Quasi-GPD HQ(0) as a function of x for ξ = 0.1 and different values of P3. Black
curve represents the standard GPD H. The limits of the ERBL region are indicated by vertical dashed lines.
Middle plot: HQ(0) as a function of x in the ERBL region for different values of P3 and for ξ = 0.01. Right
plot: Result of HQ(0) in the ERBL region for ξ = 0.4.

The left plot in Fig. 3 shows the unpolarized HQ(0) for ξ = 0.1. For the skewness variable
we have explored the range 0.01≤ ξ ≤ 0.4, and below we briefly comment on the ξ -dependence.
The convergence problem at large x persists for all the quasi-GPDs whether or not they have a
forward counterpart. In general, there is a tendency of the discrepancies at large x to increase when
ξ gets larger. The significance of this feature depends on the GPD under consideration, and it is
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Figure 4: Left plot: Comparison of the skewness variables ξ , ξ̃3 and ξ̃0 for P3 = 2GeV and |~∆⊥|= 0GeV.
Middle plot: Majority’s trend reflected through a relative-difference plot between HQ(0) and H for three dif-
ferent definitions of the skewness variable. Right plot: Outlier’s trend reflected through a relative-difference
plot between EQ(0) and E.

most pronounced for the quasi-GPDs ẼQ and ẼT,Q. The middle and right plots in Fig. 3 shows
HQ(0) for just the ERBL region for ξ = 0.01 and ξ = 0.4 respectively. Generally, for small ξ

one finds significant deviations between the quasi-GPDs and the corresponding standard GPDs.
This situation is the GPD counterpart of the problem for quasi-PDFs around x = 0. For small ξ ,
the standard GPDs rapidly approach zero at x = −ξ in a very narrow x-range, whereas the quasi-
GPDs are much smoother in that range. Once ξ is increased, we observe a (much) better agreement
between quasi-GPDs and the standard GPDs for a large fraction of the ERBL region. This outcome
suggests that lattice calculations could provide very valuable information in the ERBL region,
provided that the skewness is not too small.

So far we have used the same skewness variable ξ for both the standard GPDs and the quasi-
GPDs. However, for the quasi-GPDs one could in principle consider different variables to describe
the longitudinal momentum transfer to the hadron. Examples in this context are ξ̃3 = − ∆3

2P3 and
ξ̃0 = − ∆0

2P0 . These “quasi skewness” variables are related to the standard skewness via a higher-

twist effect encoded in the model-independent relations ξ̃3 = δξ and ξ̃0 =
ξ

δ
. The left plot of Fig. 4

shows considerable differences between ξ , ξ̃3, and ξ̃0 when P3 is small. We explored the impact of
the difference between these variables on the quasi-GPDs. Through the specific example of HQ(0),
the middle plot of Fig. 4 shows that ignoring the higher-twist effect and using ξ̃3 leads to a better
convergence of the majority of the quasi-GPDs for most of the DGLAP region. The only outliers in
that regard are EQ(0), ẼQ(0/3) and ET,Q(0), where EQ(0) is shown as a representative case in the right
plot of Fig. 4. Also, using the variable ξ̃0 typically gives poorer convergence for the quasi-GPDs.
Our conclusions also hold for even larger values of ξ , where the numerical discrepancy between
the three skewness variables increases further — see left plot of Fig. 4.

5. Moments

We first consider the lowest moment of the quasi-GPD HQ. Including a flavor index ‘q’ one
finds the model-independent relation

1∫
−1

dxHq(x,ξ , t) =

∞∫
−∞

dx
1
δ

Hq
Q(0)(x,ξ , t;P3) =

∞∫
−∞

dxHq
Q(3)(x,ξ , t;P3) = Fq

1 (t) , (5.1)
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where F1 is the well-known Dirac form factor. The lowest moment of standard GPDs depends on
t, but does not depend on ξ . The quasi-GPDs also depend on P3, but remarkably this dependence
also drops out in the lowest moment. However one must divide half of the quasi-GPDs by the
kinematical factor δ in order to arrive at this result. Since δ describes a higher-twist effect, includ-
ing this factor is in principle a matter of taste. But the moment analysis suggests that taking into
account δ like in (5.1) appears natural.

We now turn our attention to the second moment of quasi-GPDs considering again only the
vector operator ψ̄qγµψq. In close analogy to the celebrated expression for the second moment of

H +E, namely
1∫
−1

dxx
(
Hq(x,ξ , t)+Eq(x,ξ , t)

)
= Aq(t)+Bq(t) where Aq(0)+Bq(0) = Jq is the

total angular momentum for the quark flavor ‘q’, one then finds for the quasi-GPDs
∞∫
−∞

dxx
1
δ

(
Hq

Q(0)(x,ξ , t;P3)+Eq
Q(0)(x,ξ , t;P3)

)
=

1
2
(δ 2 +1)

(
Aq(t)+Bq(t)

)
+

1
2
(δ 2−1)Dq(t) , (5.2)

∞∫
−∞

dxx
(
Hq

Q(3)(x,ξ , t;P3)+Eq
Q(3)(x,ξ , t;P3)

)
= Aq(t)+Bq(t) . (5.3)

Note that in Eq. (5.2) the form factor Dq of the anti-symmetric part of the EMT enters. One can
conclude that the second moment of HQ(3)+EQ(3) is directly related to the angular momentum of
quarks, while for HQ(0)+EQ(0) this relation contains a higher-twist “contamination.” The model-
independent expressions for the moments of the quasi distributions are potentially significant as
they may be useful for studying the systematic uncertainties of results from lattice QCD, especially
due to the fact that the P3-dependence of the moments is either computable or nonexistent.

6. Summary

We have studied twist-2 GPDs through parton quasi-distributions in the SDM. Our analytical
expressions for the quasi-GPDs reduce to the respective standard GPDs for P3 → ∞ further vali-
dating that quasi-GPDs could be a viable tool for getting information about standard GPDs. For
finite P3 and large ξ , quasi-GPDs agree well with the standard distributions in the ERBL region.
This agreement gets poorer if ξ gets smaller. We have provided a model-independent analysis of
moments of quasi-GPDs including the relation to Ji’s spin-sum rule. The moment analysis may
assist in the study of systematic uncertainties in lattice QCD.
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