
P
o
S
(
D
I
S
2
0
1
9
)
1
7
6

Comments on the perturbative and non-perturbative
contributions in unpolarized SIDIS

J. Osvaldo Gonzalez-Hernandez∗
Author University of Turin
E-mail: joseosvaldo.gonzalez@to.infn.it

We address the large suppression of the unpolarized SIDIS cross section in the small transverse
momentum region, due to the O(αs) contributions in the C-coefficients needed for a consistent
matching to the large transverse momentum region, at this order in the CSS factorization scheme.
We will show that a TMD analysis with the type of cuts as those in recent extractions cannot
describe the data at this order.
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An analysis of multidimensional unpolarized SIDIS data, with maximal perturbative input, is
still missing in the literature. Here, by maximal perturbative input we mean the kind of picture
implemented in [1] for W and Z production, where soft gluon effects of the type arising in a TMD-
like formalism are accounted for, as well as the interplay and matching with the large transverse
momentum region. For instance, analyses like that of [2] do not account for soft gluon effects,
thus lacking TMD-evolution. This leading order formalism with a small number of parameters, has
been shown to be a reasonable picture when the ranges of the hard scale do not vary largely, but
does not allow to extrapolate results to higher energies. More recently, in a simultaneous analysis of
unpolarized SIDIS, Drell-Yan and Z production [3], a large amount of data was described, including
soft gluon effects, in the language of resumation, up to next-to-leading log (NLL), although lacking
the beyond-leading-order corrections necessary to match to the large transverse momentum region.
Furthermore, this analysis required an ad-hoc treatment in the normalization of the cross section in
order to describe the SIDIS data.

Including maximal perturbative input should further constrain the extraction of TMDs pro-
vidiong more predictive power1. There are, however, several challenges in the way. For instance,
the difficulty in smoothly matching the low and large transverse momentum regions, and the un-
dershooting of theoretical calculations w.r.t data, employing modern collinear functions sets in the
large transverse momentum regime in different processes [4, 5, 6, 7]. Some progress has been made
in these regards, and it is likely that in the near future such issues may be better understood (see for
instance [8, 9, 10]) .

In this work we address one more complication, which has not yet been discussed in detail
in the literature: the order αs contributions in the TMDs, needed for a consistent matching at this
order, largely supress the cross-section in the small transverse momentum region. In fact, as we
will show in the following examples, an analysis with the type of cuts as those used in [2, 3] cannot
describe the data at this order. For concreteness, we work within the so called CSS1 formalism [11].
The results presented here should not depend on the particular factorization scheme employed, see
[12] for a detailed comparison of different frameworks. In fact, using CSS1 allows for a more
direct comparison to the available analyses of unpolarized SIDIS data.

In CSS1, the unpolarized SIDIS cross section reads

dσ total

dxdydzdq2
T
= πσ

DIS
0

∫ d2bT e i qT·bT

(2π)2 W SIDIS(x,z,bT,Q)+Y SIDIS(x,z,qT,Q) , (1)

W SIDIS(x,z,bT,Q) = ∑
j

e2
j ∑

i,k

(
Cin

ji ⊗ fi(x,µ2
b )
)(

Cout
k j ⊗Dk(z,µ2

b )
)

exp [S(bT,x,z,Q)] , (2)

S(bT,x,z,Q) =−
Q2∫

µ2
b

dµ2

µ2

[
A(αs(µ)) ln

(
Q2

µ2

)
+B(αs(µ))

]
+Smodel(x,z,bT,Q). (3)

For details on the structure of Eqs. (1-3), see for instance [13]. For the purposes of our dicussion,
we remark only a few points:

1. The CSS1 expression for the cross section should describe observables up to a range of
qT ∼ Q, provided the corrections of the Y SIDIS are included.

1It is likely that such improvement will be reflected in a reduction of the number of parameters necessary to describe
data
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2. A, B, Cin
ji and Cout

k j are calculable within pQCD, while Smodel should be extracted from data.

3. The convolutions of the matching coefficients Cin/out with collinear distributions and frag-
mentation functions, fi/A(x,µ2

b ) and DB/k(z,µ2
b ), provide an important constraint in any

TMD formalism. The scale µb = 2e−γE/b∗ involves a "freezing" prescription, which most
often is taken to be

b∗ =
bT√

1+b2
T/b2

max

. (4)

Since we are not attempting a full extraction, we will focus only on the COMPASS 2017
data [14]. Although not explicitly shown here, similar issues arise for the other available multidi-
mensional sets.

We wish to show the suppression of the cross section in the small transverse momentum region,
due to O(αs) corrections. We will illustrate this by performing test fits on data at fixed x and Q2,
that is, we fit individual panels in Fig. 1. Thus, for each example we perform 22 independent
fits. These test fits are useful in a full analysis because they allow us to proceed stepwise: first
testing our ability to reproduce one panel at a time, taking a first glance at the z and PT dependence,
and then extending the model so that also x and Q2 dependences can be included. In fact, the first
step can be seen as a necessary condition to perform a simultanous fit on the entire data set. Our
examples will show that at O(α1

s ), such condition cannot be fullfilled when considering the type of
cuts employed in [2, 3]. More concretely, we trace this suppression back to the O(αs)-terms in the
matching coefficients Cin

ji and Cout
k j . We quantify this by introducing a normalization parameter Ni,

for each test fit, which will serve as a diagnostics tool to quantify the severity of the problem. We
proceed as follows:

1. We consider only the contributions from W SIDIS in Eq. (1), with Smodel =−g1 b2
T −g2 b2

T/z2,
where g1 and g2 are free parameters2 . Furthermore, bmax = 1.0 GeV−1 in Eq. (4).

2. Test fits are performed on the COMPASS 2017 data [14], for fixed x and Q2 (22 fits in total).
A normalization Ni is introduced for each test fit, multiplying Eq. (1) (22 normalizations in
total). This free parameters will serve as a diagnostics tool to quantify the severity of the
problem, the suppression of the cross section in the small transverse mometum region. In an
ideal scenario, all the normalizations should satisfy Ni = 1.

3. The test fits are performed on COMPASS 2017 data in the region PT ≤ 0.9 GeV3. Note
that the reported data are actually multiplicities: SIDIS cross sections normalized by fully
inclusive cross sections.

4. Although not explictly shown here, in the cases where large values for Ni are encountered,
we check that performing a fit with fixed Ni = 1 does in fact result in undershooting the data.

2The issue we want to discuss at small transverse momentum is not expected to be resolved by means of the Y -term,
which corrects the cross section in the region of intermediate qT .

3Strictly following the CSS formalism one should perform cuts in qT, however our choice allows for a more direct
comparison with current analyses on COMPASS data. We have checked that cutting the data for qT < 0.5Q renders
similar results.
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We remark some important aspects of our procedure. First, the values of Ni, used to quantify
the issues with normalization in the fits, do not need to be exactly unity to correspond to a satisfac-
tory picture. For instance, one can tolerate a small deviation Ni ±δi, provided δi is consistent in all
or in a given set of test fits. In this situation one may expect to fit simultaneously the corresponding
range of kinematics by suplementing the calculation with one unique normalization, as tipically
done in global analyses. Second, in some cases the additional flexibility due to Ni may not be
required to fit the data. This can be reflected in large statistical uncertainties or strong correlations
between the model parameters and Ni. Finally, details of the implementation do have an impact in
the precise minimal values of the Ni, so it is possible that improvements can be made by adjusting,
for instance, the model or the value of bmax.

With this considerations in mind, we will focus on the situations where large deviations from
unity are observed for Ni. We proceed by performing test fits for three different cases, summarized
in Table 1.

A B Cin/out

CASE I O
(
α0

s
)

O
(
α0

s
)

O
(
α0

s
)

CASE II O
(
α2

s
)

O
(
α1

s
)

O
(
α0

s
)

CASE III O
(
α2

s
)

O
(
α1

s
)

O
(
α1

s
)

Table 1: Cases considered in our test fits. The columns show the order to which each of the
perturbative coefficients in Eqs. (1-3) are considered.

The first case is a leading order picture, not very different from the generalized parton model
of [2], within the scope of this work. The second one corresponds to the same accuracy in per-
turbation theory of the analysis in [3]. There, this is called LO/NLL. In this case, the matching
coefficients Cin/out are unity, thus the convolutions in Eq. (2) become simply fj(x,µb) and Dj(z,µb).
Finally, the third case is similar to the second one but now including corrections of O(α1

s ) in the
matching coefficients Cin/out, thus the convolutions in Eq. (2) are non-trivial. These corrections are
necessary to match the small and large transverse momentum regions in the CSS formalism, thus a
crucial step in a TMD analysis.

We note that for our discussion, it is more important to look at each one of these cases in com-
parison with the other two, rather than reading out precise values of the extracted parameters. We
simply aim at exemplifying the most prominent issue in describing the data in the small transverse
momentum region.

Results for the test fits described in Table 1 are shown in Fig. 1. There, the obtained values of
Ni are represented by color bars on top of each panel. For instance, in both cases I and II, in the the
top right panel (labeled as "22"), the test fits result in good agreement with the data, with values
for the normalization N22 ∼ 1. However, in this same panel in case III, a description of the data can
only be achieved with a value for the normalization N22 ∼ 2. In fact, for most of the kinematics
in case III, the suplemental normalizations Ni are mostly close to this same value. This means that
the actual computation of the cross section in case III is supressed by about roughly 50% in most
panels w.r.t. cases I and II. By comparing the three plots in Fig. 1, it is clear that such suppression
arises from the O(α1

s ) contributions of the matching coefficients Cin/out. It is also interesting to
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note, by comparing cases I and II in Fig. 1, how the situation improves for some of the panels in the
lower x region, when considering soft gluon effects, i.e. when A and B in Eq. (3) are non-trivial.

We should stress that the suplemental normalizations Ni in our test fits have been used as
a diagnostics tool only. We do not attempt to justify their use in a full TMD analysis. On the
contrary, it must be emphasized that there is a the danger in doing so: this type of treatment for
the normalizations, in a TMD extraction, may render the constraints provided by the matching
coefficients useless, thus undermining the predictive power of pQCD. This is so because the role
of such normalization is to enhance(supress) the contributions from Cin/out in the small bT region,
but the small bT behaviour of W SIDIS in Eq. (2), should be determined solely by the convolutions
invoving the coefficients Cin/out.
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Figure 1: Test fits for cases I, II & III in Table 1. In each case, fits are performed panel by panel,
further details in text.

The suppression of the SIDIS cross section due to the O(α1
s ) contributions of the matching

coefficients Cin/out, poses a challenge for TMD studies. We stress that while we analysed data
in the region PT < 0.9GeV, we have checked that selecting data in the region qT < 0.5Q, which
is more consistent with the CSS formalism, renders similar results. It is possible that this issue
reflects the fact that a more stringent cut should be imposed. In fact, the analysis in [16] points to a
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cut of qT < 0.2Q, for the TMD region. Finally, we remark that the choice of model does not seem
to resolve the issue. We found that with a power law behaviour for exp(Smodel), some improvement
is attained, but not enough to resolve the issue. We leave a more detailed discussion on these topics
for an upcoming publication.
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