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Off-shell initial states in the Drell-Yan process Maxim Nefedov

1. Introduction

In the notation of Ref. [1] the differential cross-section of the Drell-Yan process of production

of the lepton pair (l+l−) with transverse momentum (qT ), squared invariant mass (Q2 = q2) in the

collision of two non-polarized hadrons with center-of-mass energy (
√

S) can be written as:

dσ

dxAdxBd2qT dΩ
=

α2

4Q2

[

F
(1)

UU ·
(

1+ cos2 θ
)

+F
(2)

UU ·
(

1− cos2 θ
)

+

+ F
(cosφ)

UU · sin(2θ)cos φ +F
(cos2φ)

UU · sin2 θ cos(2φ)
]

, (1.1)

were angles θ and φ define the direction of momentum of l+ in the Collins-Soper frame [2],

F
(1,2,...)

UU (xA,xB,qT ) are the Helicity Structure Functions (HSFs) and xA,B = Qe±Y/
√

S.

In the present contribution we will present a QED gauge-invariant version of Transverse Mo-

mentum Dependent(TMD) factorization for the HSFs, based on the Parton Reggeization Approach

(PRA) [3, 4]. In the traditional TMD factorization, which for the purposes of this paper we will

call the TMD Parton Model(TMD PM), see e.g. [1, 5], hadronic tensor does not satisfy the Ward

identity of QED. PRA is a particular, physically motivated proposal for the O(qT/Q) corrections

to the usual TMD hadronic tensor, which restore it’s gauge-invariance.

Present contribution has the following structure. In the Sec. 2 we recall the notation of tra-

ditional TMD PM and in the Sec. 3 we describe PRA and it’s relationships with TMD PM and

present some numerical results for HSFs.

2. TMD Parton Model

In the standard TMD PM approach [1, 5], based on a simple qq̄-annihilation picture of the

Drell-Yan process, the hadronic tensor is decomposed as follows:

Wµν =W
(TMD)
µν +Yµν = ∑

q,q̄

e2
q

Nc

tr
[

γµΦq(q1,P1)⊗T γν Φ̄q̄(q2,P2)
]

+Yµν , (2.1)

where f1(qT1)⊗T f2(qT2) =
∫

d2qT1d2qT2δ (qT −qT1−qT2) f1(qT1) f2(qT 2) and four-momenta of

quark(q1) and anti-quark(q2) are parametrized as q
µ
1,2 = P

µ
1,2xA,B +q

µ
T 1,2. The first term in Eq. (2.1)

is a contribution of a leading power in qT/Q to a hadronic tensor, while all subleading contributions

are supposed to be included to the Yµν -term. Due to a large boost between hadron rest frame

and hadronic center-of-mass frame, only terms proportional to n
µ
− = 2P

µ
1 /

√
S contribute to the

correlation function of quark fields Φq(q1,P1) at leading power, and it’s Dirac structure can be

parametrized as follows:

Φq(q1,P1) =
1

2

[

n̂− f
q
1 (x1,qT 1)− iσ i−γ5

ε
i j
T q

j
T 1

Λ
h
⊥q
1 (x1,qT 1)

]

, (2.2)

where, f
q
1 (x1,qT 1) is a number-density TMD Parton Distribution Function(PDF), h

⊥q
1 (x1,qT 1) is

a Boer-Mulders function [6], Λ is a scale of non-perturbative intrinsic transverse momentum of

partons inside a hadron, which is typically taken to be Λ ∼ M, and analogous decomposition holds

for Φ̄q̄.
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The full hadronic tensor should satisfy Ward identity of QED:

qµWµν = 0,

however, it is easy to verify, that for the first term in Eq. (2.1): qµW
(TMD)
µν = O(qT ), so that the

gauge-invariance is restored by some O(qT/Q) power-corrections from Yµν . On the other hand, the

Y -term is needed to describe the qT & Q-region, and phenomenologically we expect it to be well-

approximated in this region by Collinear Parton Model calculation in the fixed-order in αs(Q
2 +

q2
T ), while at qT . Q it should be negligible. Therefore, it is desirable to remove any genuinely

non-perturbative contributions, associated with restoration of gauge-invariance of W (TMD)-term at

qT . Q, from the Y -term.

The problem of gauge-invariant definition of W (TMD)-term has been considered in Ref. [5]

(Sec. 14.5.2). There it has been proposed to to put momenta of initial-state quarks on-shell: q2
1,2 =

0, while retaining their transverse momenta and “large” light-cone momentum components. We

call this approach – Quasi-on-Shell Scheme (QOS). This scheme can be implemented in two ways,

see Sec. 4 of our Ref. [3], and resulting Q(qT/Q)-corrections to the Hard-scattering Coefficients

come-out to be totally different, depending on the prescription one chooses. Therefore one can

not proceed with ad-hoc prescriptions and actually needs a physically-motivated ansatz for the

power-supressed terms restoring the gauge-invariance of W (TMD).

3. Parton Reggeization Approach

The gauge-invariange of the hadronic tensor holds because apart from the t-channel qq̄ - an-

nihilation (Parton Model) diagram, there exist other contributions to p+ p → γ⋆+X -amplitude,

where photon is interacting directly with constituents of the colliding protons and beam-remnants.

This contributions are beyond the scope of PM, but one can try to analyze them in model field the-

ories and look for the limit when contributions of this kind also factorize, leading to some PM-like

interpretation, independent on the details of above-mentioned interactions.

In fact, such factorization is well-known in the field of small-x physics. It is proven in

the Leading and Next-to-Leading Logarithmic Approximation w.r.t. resummation of log(1/x) in

QCD [7, 8], that in the Multi-Regge limit Q2,q2
T ≪ S the universal vertex (Fadin-Sherman vertex)

of production of virtual photon in an annihilation of Reggeized quark and antiquark factorizes-out

from the amplitude:

Γµ(q1,q2) = γµ − q̂1

n−µ

q−2
− q̂2

n+µ

q+1
, (3.1)

where n
µ
+ = P

µ
2 /

√
S. The vertex (3.1) satisfies the Ward identity (q1 +q2)

µΓµ(q1,q2) = 0.

It is instructive to understand, how this factorization arises at tree level in a model field-theory,

similar to that of Ref. [9], where elementary spinorial “proton” fields (p) with electric charge ep

and scalar “spectator” fields (s) with charge es can interact with quarks with electric charge eq. In

this theory the following “Drell-Yan” process is possible:

p̄(P1)+ p(P2)→ γ⋆(q)+ s(P′
1)+ s(P′

2), (3.2)

2



P
o
S
(
D
I
S
2
0
1
9
)
1
9
3

Off-shell initial states in the Drell-Yan process Maxim Nefedov

P2 → P′
2 →

q2 ↑

P1 → P′
1 →

q1 ↓
q →

(1) (2) (3)

Figure 1: Diagrams contributing to the Multi-Regge limit of the process (3.2) in the model theory. Two

diagrams where photon interacts with the opposite proton and spectator lines also should be added.

and in the Multi-Regge limit: S ≫ Q2 ∼ q2
T one has

(P′
1)

+ ≃ P+
1 =

√
S, (P′

2)
− ≃ P−

2 =
√

S, qT ∼ q± ≪
√

S.

In this limit, only diagrams in the Fig. 1 contribute, because “crossed” diagrams have at least

two propagators suppressed by
√

S. Factors in the second and third diagrams which describe in-

teraction of the photon with the proton or spectator line carrying large P+
1 momentum can be

simplified at leading power in Q/
√

S as follows:

M
µ
2 ∝ epv̄(P1)γ

µ P̂1 − q̂

(P1 −q)2
(iλspq)≃ epv̄(P1)

P+
1 γµ n̂−

2(−P+
1 q−)

(iλspq) = v̄(P1)(iλspq)
iq̂1

q2
1

[

iep

q̂1n
µ
−

q−

]

,

M
µ
3 ∝ es

(2P1 +2q2 −q)µ

(P1 +q2)2
v̄(P1)(iλspq)≃ es

P+
1 n

µ
−

P+
1 q−

v̄(P1)(iλspq) = v̄(P1)(iλspq)
iq̂1

q2
1

[

−ies

q̂1n
µ
−

q−

]

,

where λspq is the spectator-proton-quark interaction constant. Hence, M2 +M3 is proportional to

ep−es = eq as well as the first diagram. When all five diagrams are taken together, the Multi-Regge

limit of the amplitude can be cast into a following effective t-channel exchange form:

M
µ ≃ v̄(P1)(iλspq)

iq̂1

q2
1

(−ieqΓµ(q1,q2))
−iq̂2

q2
2

(iλspq)u(P2).

This little example shows, that Fadin-Sherman vertex is independent from spins and charges of

particles which are highly separated in rapidity from the photon, which is a basic prerequisite of

factorization.

In PRA we propose to modify the definition of W (TMD) in Eq. (2.1) as:

W
(PRA)
µν = ∑

q,q̄

e2
q

Nc

tr
[

Γµ(q1,q2)Φq(q1,P1)⊗T Γν(q1,q2)Φ̄q̄(q2,P2)
]

. (3.3)

This leads to the following factorization formula for the contributions of number-density TMD

PDF to the structure functions [3]:

F
(1,2,...)

UU = ∑
q,q̄

e2
q

Nc

f
q
1 (x1,qT1)⊗T f

q̄
1 (x2,qT2) ·w(1,2,...)

PRA (qT1,qT 2,Q
2), (3.4)

where x1,2 = QT e±Y/
√

S, QT =
√

Q2 +q2
T and

w
(1)
PRA =

2Q2 +q2
T

2Q2
T

, w
(2)
PRA =

(qT1 −qT2)
2

Q2
T

, w
(cosφ)
PRA =

√

Q2

q2
T

q2
T1 −q2

T2

Q2
T

, w
(cos2φ)
PRA =

q2
T

2Q2
T

.
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Figure 2: Predictions for unpolarized Drell-Yan SFs F
(1)

UU , F
(2)

UU and F
(cos2φ)

UU in pp-collisions at
√

S = 24

GeV [10]. Solid lines with uncertainty bands – PRA predictions. Dashed lines – predictions in the QOS-

scheme [3] for the default scale-choice. Short-dashed line - plot of the (−F
(cos2φ)

UU ) in the QOS scheme, since

this SF in QOS scheme is negative at low qT .

Eq. (3.4) is just the Eq. (7) from our Ref. [3] rewritten in terms of TMD PDFs with the same

normalization as in Eq. (2.2), which is more conventional in the TMD community. This TMD

PDFs are related with TMD PDFs of PRA as f
q
1 (x, t,µ

2) = Φq(x, t,µ
2)/(π

√
Sx), since in PRA

we include the flux-factor for initial-state partons 1/(2Sx1x2) = 1/(2Q2
T ) into the cross-section

formula.

One observes, that the contributions of number-density TMD PDF to all structure functions

except F
(1)

UU are Q(q2
T/Q2), as it should be, according to the TMD PM analysis, so that the only

leading-power contribution to F
(cos2φ)

UU comes from the convolution of two Boer-Mulders functions.

However, the Boer-Mulders TMD PDF is expected to be significantly smaller than number-density

TMD PDF and it’s effects are observable only at nonzero qT . Taking into account, that values of Q2

in the existing and planned experiments, such as COMPASS and NICA SPD [10] lie in a ballpark

of 10 GeV, the power-suppressed corrections could be important for the extraction of Boer-Mulders

TMD PDF, especially in the transition region qT ∼ Q.

In Ref. [3] we have performed a numerical analysis with the help of Eq. (3.4) and a realis-

tic model for number-density TMD PDF, based on the Kimber-Martin-Ryskin formula [11] and

MSTW-2008 [12] set of collinear PDFs. This TMD PDF allowed us to reproduce the observed

qT -spectra of Drell-Yan pairs from several low-energy experiments and polarization observables

measured by NuSea Collaboration [13], see Refs. [3, 4] for more details.

The results for structure functions, obtained in Ref. [3] are shown in the Fig. 2. Positivity of

angular distribution (1.1) requires F
(cos2φ)

UU ≤ F
(1)

UU +F
(2)

UU . From Fig. 2 one can see, that F
(cos2φ)

UU in

PRA can reach values up to a few percent of F
(1)

UU at qT ∼ 1 GeV and up to a several tens of percent,

if one increases qT closer to Q. This PRA results can be viewed as an estimate of a contribution

of power-suppressed corrections. Measured values of F
(2,cos2φ)

UU at this level can be interpreted as

a result of power-suppressed corrections and can not serve as a clear indication of Boer-Mulders

effect.
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