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Describing qT -dependent SIDIS distributions requires consideration of two different regimes
which involve two different factorization schemes. In both cases, the necessary ingredients in-
clude parton distribution and fragmentation functions (PDFs and FFs), which are traditionally
extracted in statistical analyses with collinear observables. We will present examples of how the
errors in the extraction of collinear PDFs and FFs may affect the successful description of the
qT -dependent SIDIS distributions.
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1. Introduction and theoretical background

Hadronic processes involving the production of jets at high energies can be studied in the
framework of factorization [1], which allows to distinguish long-distance (low-energy) effects
from short-distance (high-energy) contributions. The first are usually parametrized by suitable
sets of phenomenological universal quantities, as Parton Distributions (PDFs) and Fragmentation
Functions (FFs), while the latter are computable in perturbative QCD. In order to obtain a reliable
picture of how confinement works, the role of the non-perturbative parts is crucial in the attempt to
describe data. The correct parametrization in terms of PDFs and FFs depends on whether the par-
tons associated to the jets have a transverse momentum that can be neglected. When this is the case,
the non-perturbative functions are called collinear, since they do not account for partonic transverse
motion. Instead, when parton transverse momenta cannot be neglected, we rely on Transverse Mo-
mentum Dependent (TMD) parton distributions. Two distinct schemes of factorization have to be
applied in these two cases.

We will focus on SIDIS (Semi-Inclusive Deep Inelastic Scattering). This process consists in an
initial state, associated with the incoming hadron described by a PDF, and a final state, generated
by one outgoing hadron and related to a FF. The choice of factorization scheme depends on the
ratio between the magnitude of the transverse momentum qT of the virtual photon that mediates the
interaction and the transferred momentum Q in the c.m. frame. It can be shown [1] that the collinear
scheme applies in the large-qT region (qT/Q� 1), while in the low-qT region (qT/Q� 1) the TMD
factorization scheme has to be used. Anyway, independently of the chosen factorization scheme,
the collinear function will appear in the formulas of both the regions. In fact, it is common to
write the cross section formula in the low-qT region as the Fourier Transform of the corresponding
quantity in the conjugate bT -space and expand the TMDs in the small-bT regime in an Operator
Product Expansion (OPE), involving the collinear functions convoluted with some computable
Wilson coefficient [1, 2, 3]). As a consequence, the collinear functions are of the utmost importance
in the description of the whole qT -spectrum of data and the impact of the uncertainty associated to
their extraction should always be carefully taken into account.

2. Large-qT region

In the large-qT region, the SIDIS cross section can be written as [4]:
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where the virtual photon has a transverse momentum given by qT = PT/zh. Furthermore, xB j

denotes the collinear momentum fraction carried by the initial parton with respect to the parent
hadron and zh that of the outgoing hadron with respect to the fragmenting parton, while dσ̂ is the
partonic cross-section of the process, which can be computed perturbatively in terms of the leptonic
Lµν and the hadronic Mµν tensors:
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The Dirac delta shapes the phase space integrals in such a way that the variables x and z never reach
values greater than their allowed maxima. Since the most recent COMPASS data (Ref. [5]) are
differential in P2

T , the SIDIS cross section of Eq. 2.1 can be directly compared to data.

2.1 Impact of the FFs set.

Following Ref. [4], the formula for the cross section (Eq. 2.1) has been written factoring out
one power of αS. In fact, in the high-qT regime, one should consider at least one real (gluon)
emission, so that the cross section starts from first order in αS. Therefore, the natural choice for
the collinear functions is a NLO set. However, as showed in Fig. 1, the data cannot be successfully
described by using NLO PDFs and FFs sets, which significatively underestimate data. While re-
producing the right shape seems not to be difficult, getting their right normalization is a problem.
One might think that including the higher orders in the perturbative expansion of the partonic cross
section could help in reaching a better agreement with experimental measurements. However, as
shown in Ref. [8], even including O(α2

S ) corrections is not enough to reproduce the data. Hav-
ing excluded the possibility of large contributions from higher order QCD corrections, it becomes
crucial to evaluate the impact of the non-perturbative terms in the computation of the SIDIS cross
section. As the PDFs are believed to be known to a rather good precision, we will focus on the FFs
and assess how the uncertainties in their phenomenological extraction can affect the cross section
itself. We will proceed by changing the FF set and try to shed some light on the impact of going

Figure 1: Differential multiplicities at COMPASS kinematic. Here we use the CT10NLO PDFs [6] and the
FFs from Ref. [7]. The dotted lines correspond NLO, while the continuous lines to LO.
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Figure 2: Comparison between DSS at LO (red lines) and DSS at NLO (black lines) at Q2 = 10 GeV2.The
yellow rectangles identify the range 0.2 < z < 0.6, tipical of COMPASS kinematics. Notice that the gluon
contribution at LO is considerably larger than at NLO in the selected kinematics, while no significative
difference affects the quark and anti-quark contributions.

from LO to NLO, using a different set1 that provides larger values of the FFs for the COMPASS
kinematics. Among the FFs, the gluon fragmentation function is the most difficult to determine,
especially at low Q. Therefore, it is interesting to modify the FFs using a different set in which the
gluon is overblown in the kinematics of interest. As shown in Fig. 2, the LO DSS set does the job:
the multiplicities computed with this new set have the same shape of those shown in Fig. 1, but the
discrepancy between theory and data is visibly reduced in size.

2.2 Impact of uncertainties.

The collinear functions are always provided with an uncertainty related to their extraction from
experimental data2. Usually, the multiplicities are computed using only the central line of each
set, however it is possible to include this uncertainty band on each theoretical curve, in order to
investigate how much it affects the result. In particular, if these bands are large enough to cover the
discrepancy between theory and data, it would be possible to choose collinear functions different
from those of the central line, but still in agreement with experiments and consistent among each
others.

The computation of the uncertainty bands has been implemented using the LHAPDF Python
routine (Ref. [9]). As the uncertainties for DSS FF sets are not available, we used Neural Net-
works collinear functions, (Ref. [10, 11]). Unfortunately, the NN FFs are provided only for pion
production, while COMPASS multiplicities are given for unseparated charged hadrons. Hence the
analysis does not involve the explicit comparison with experimental data, although it provides a
reliable estimate of the sizes of the errors related to the collinear functions.

1Changing the functional form of a particular collinear function, e.g. the gluon alone, could be inconsistent with the
other flavors, because of counting rules that relate them. Hence, to modify even just one collinear function, the whole
set should be changed.

2In particular, this is the statistical error associated with the determination of the correct functional form of collinear
PDFs and FFs
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Figure 3: Uncertainty bands associated to the SIDIS cross section at high qT for Q2 = 2.1 GeV2, x = 0.0106
and y = 0.674. The colors identify different values of z, as in Fig. 1. The most sizable contributions are due
to the FFs, while the PDF bands are rather small. Note that although the NLO FFs uncertainties are larger
than the their LO counterparts, their sizes do not seem to be able to cover the gap between theory and data.

3. Low-qT region

In the low-qT region it is still possible to write a factorized formula for SIDIS using a TMD
factorization scheme, which now involves TMD distributions instead of collinear functions. In this
case, the cross section is expressed as a Fourier transform from the conjugate bT -space, where bT

is the transverse separation of the operators defining the TMDs in coordinate space. Following
Refs. [1, 4], we can write:

dσ

dxB j dydzh dq2
T
= πz2H2(Q, µ)

∫ d2~bT

(2π)2 ei~qT ·~bT
{

∑
j

e2
j F̃j(x, bT , µ, ζF) D̃ j(z, bT , µ, ζD)

}
. (3.1)

The TMDs F̃ and D̃ are given by:

F̃j(x, bT , µ, ζF) = C̃ j
f (ξ , b?, µb, ζb)⊗ f j(µ)× eSpert(b?,Q/µb,ζF/ζb)× eSNP(bT ) , (3.2)

where b?(bT ) reproduces bT for small values of bT but is no larger that a certain bmax at large-
bT , while the reference scales µb ∝ 1/bT and ζb = µ2

b are the standard choices for the small-bT

region. The perturbative Sudakov factor, Spert, orginates from the contribution of soft gluons and
from the anomalous dimensions, while a model, SNP, is needed to parametrize the intrinsecally
non-perturbative large-bT region. The contribution of the collinear functions in Eq. 3.2 appears
non-trivially and hence it is possible to study the impact of the error of the collinear functions
in the TMD region. Similarly to what happens at large-qT , also in the low-qT region there is
a normalization problem that affects the agreement between theory and data. However, Fig. 4
shows that using a different set of FFs this problem becomes less severe. In fact, for NLO FFs the
mismatch due to normalization is roughly a factor 2, while using LO FFs one can gain a factor ∼ 5
in the low-qT region. However, the uncertainty band associated to the NLO FFs is so large that not
only the central line of the LO FFs set, but also its full error band, is totally included.

In conclusion, this study shows that the impact of the uncertainties on the FF extraction may
well be large enough to allow for a better description of the experimental data, even preserving
consistency among flavors.
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Figure 4: Uncertainties due to the collinear FFs on the cross section at low-qT (Q2 = 2.1 GeV2, x = 0.0106,
y = 0.674, z = 0.35). The PDF set is from Ref. [10]. The solid (black) line represents the cross section,
Eq. 3.1, as obtained by using the LO FF set from Ref. [11] and the red band is its corresponding uncertainty,
while the dashed line represents the result obtained by using the NLO FF set, with its uncertainty band (in
blue).
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