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1. Introduction

The quantum problem of three bodies with Coulomb interaction is one of the most notable
nonintegrable problems in quantum mechanics. At the same time, extremely accurate numerical
solutions for the problem of bound states for a system of three particles may be obtained with
modern computers. For example, the nonrelativistic energy of the ground state of helium with a
nucleus of an infinite mass is now known accurately to 46 significant digits [1].

In the present study, a version of the variational method (the so called "exponential" expan-
sion) [2] that allows to numerically solve the quantum Coulomb three-body bound state problem
with a very high precision, which is easily applicable as well to the states with a nonzero angular
momentum, is considered. This method is used to calculate the nonrelativistic energies of a helium
atom for S, P, D, and F states. It is shown that the developed method is an efficient and flexible
instrument for studying Coulomb systems. An analysis of convergence proves that the method
is highly accurate and demonstrates that nonrelativistic energies accurate up to 28-35 significant
digits may be obtained with rather moderate efforts.

Developing of such high precision methods is of importance for the reason that it may help
solving a wide variety of problems that are of interest in physics. For example, antiprotonic helium
atoms are of particular interest, which allows for high precision studies of energy spectrum of this
exotic system and inferring of various properties of an antiproton from comparison of theory and
experiment [3, 4]. Here it is worthy to mention a recent interest to the antiprotonic helium as a
tool for constrains on various fifth forces [5, 6] to set general limits on new interactions beyond the
Standard Model.

2. Generalized Hylleraas expansion

Let us consider the generalized Hylleraas expansion for the states of arbitrary total orbital
momentum L [7]:
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& = L for the states of "normal" spatial parity IT= (—1), and . = L+ 1 for the states of "anoma-
lous" spatial parity IT= (—1):*!. The complex parameters in the exponent are generated in a pseu-
dorandom way. The @Ll]{f functions are regular bipolar spherical harmonics [8] that depend on two
angular coordinates:
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where ¥;(F) = ¥,,,(0, ) = /2 gﬁ;ﬁ;il)lm(cos(e))eim"’, P/"(cos(0) are associated Legendre poly-
nomials. Spatial parity operator Py = my acts on the spatial coordinates in the following way:
P(ryi,r2) — (—r1,—r2). The ease of use of the @Lll{f functions stems from the fact that they cor-
rectly reproduce the behavior of the wave function at r; — 0 (or r, — 0 ), and retain the reasonable
requirement of boundedness of the function within the domain of variables for the expression within

square brackets in Eq. (2.1).
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Table 1: Convergence of the nonrelativistic energy of the ground state of a helium atom.

Basis (N) E,,
10000 —2.90372437703411959831 11592451939
14000 —2.90372437703411959831 1159245194 398
18000 —2.90372437703411959831 1159245194 40432
22000 —2.903724377034119 59831 1159245194 40443

3. Results and discussion

In Table 1 we check the convergence of energy for the ground state of helium versus increasing
basis sets of the variational expansion. The structure of "layers" of basis functions is very similar to
what was used in our previous calculations [9], where it was explicitly published (see Table I in [9]).
In present case we optimized the variational basis with N = 10000 functions and 8 layers. For the
final calculation with N =22 000 functions we used 12 layers, and for the last four layers the ends of
intervals [A1,A;] and By, B,] grew exponentially: A;(j) = B1(j) = 10/~%, Ay(j) = B2(j) = 10/ 73
for j=9,...,12. Computations were performed in the duodecimal arithmetics (about 100 decimal
digits). Programs of duodecimal precision were developed by our group in order to overcome the
problem of the numerical instability of calculations at large values of N.

Results of numerical calculations of the nonrelativistic energies for S, P D, and F states of a
helium atom are presented in Table 2. Variational parameters were optimized manually. It should
be noted that the optimal variational parameters for different states differ significantly, and the
calculation accuracy depends to a considerable extent (5-8 digits) on the particular choice of op-
timal variational parameters for a given bound state. Basis sets with N = 10000 functions were
used to optimize the variational parameters. When the non S states listed in the table were calcu-
lated, 4 to 6 "layers" of basis functions were used, while for the § states calculations were done
in the similar way as for the ground state. The results in Table 2 are presented for two subsequent
calculations with increasing basis sets, what allows to demonstrate convergent digits. The third
line shows the results of variational calculations by Drake and Yan [10] performed in year 1992,
where the Rydberg states (excluding S states) of helium were studied. Comparison between two
calculations demonstrates excellent agreement. The largest set for each particular state has been
chosen by the reason that further increase of the basis gives rise to numerical instability of calcu-
lations within given duodecimal arithmetics. As may be seen numerical precision for triplet states
is slightly higher, probably that is due to smaller effect of the logarithmic singularity. For higher
orbital angular momentum states we have managed to achieve precision of 27-28 digits. Still that is
the best known data for these states. All the calculations were performed on the Linux mainframe
computers of our Laboratory.

For the ground state energy we compare our best obtained value with previously published
results in Table 3. Indeed, explicit inclusion of the logarithmic singularity into a variational expan-
sion may seriously improve precision of the results. On the other hand, with our variational basis
function we can easily extend calculations to the states with excited electronic orbital as well as
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Table 2: Convergence of the nonrelativistic energies of the S, P, D, and F' states of a helium atom. N is the
number of basis functions. The two lines represent two consecutive calculations with the largest basis sets
to show convergent digits. The third line presents calculations by Drake and Yan [10].

State N E,, State N E,,
1S 18000 —2.90372437703411959831115924519440432 41s 14000 —2.03358 6717030725 44743 9292644363 64
1S 22000 —2.90372437703411959831 1159245194 40443 4's 18000 —2.033586717030725447439292644363 87
21S 18000 —2.145974046054417415805028975461918 435 14000 —2.036512083098236299580378071617 853
218 22000 —2.145974046054417415805028975461921 435 16000 —2.036512083098236299580378071617 874
[10] —2.14597404605443(5)
23S 14000 —2.17522937823679130573 8978278206 81124 4P 18000 —2.0310696504502407147589314 360903
23S 16000 —2.17522937823679130573 8978278206 81125 4lp 22000 —2.0310696504502407147589314 36094 1
[10] —2.1752293782367912(1) [10] —2.03106965045024(3)
2'P 18000 —2.12384308649810135924 7333142354 43P 18000 —2.0323243542966303319538824 67087
21p 22000 —2.12384308649810135924 7333142374 43p 22000 —2.03232435429663033195 38824 67103
[10] —2.123843086498092(8) [10] —2.03232435429662(2)
22P 16000 —2.1331641907 7928320514 69927 63793 4'p 22000 —2.031279846178684 9962139438073
23P 18000 —2.13316419077928320514 69927 63806 4'p 26000 —2.031279846178684 9962139438 143
[10] —2.13316419077927(1) [10] —2.031279846178687(7)
31 18000 —2.06127 1989740908 65074 03499 370892816 43D 18000 —2.031288847501795 5380234920591
318 22000 —2.06127 1989740908 65074 03499 37089 2824 43D 22000 —2.031288847501795 5380234920630
[10] —2.0312838847501795(3)
335 14000 —2.06868 90674 7245719199 65329 11291 75048 4'F 18000 —2.0312551443 81748 6086320824071
338 16000 —2.06868 9067472457 1919965329 1129175049 4'F 22000 —2.0312551443 81748 60863 20824 079
[10] —2.031255144381749(1)
3lp 18000 —2.055146362091943 5369283410913 43F 18000 —2.03125516840324539350498872817
3P 22000 —2.05514 6362091943 5369283410921 43F 22000 —2.0312551684032453935049887 2846
[10] —2.05514636209195(3) [10] —2.0312551684032454(6)

33P 18000 —2.05808 1084274275331342696547197
33P 22000 —2.05808 1084274275331342696547203
[10] —2.05808 10842 7428(4)

31D 18000 —2.0556207328 5224648939 00994 819
31D 22000 —2.0556207328 5224648939 00994 825
[10] —2.055620732852245(6)

33D 18000 —2.0556363094532613271149601 65840
33D 22000 —2.055636309453261327114960165851
[10] —2.055636309453261(4)

nonzero angular momentum states with large L.

Variational wave functions of bound states are obtained by solving the Schrodinger equation

for the quantum three-body problem with Coulomb interaction using a variational approach based

on exponential expansion with the parameters of exponents being chosen in a pseudorandom way.
The results of these studies demonstrated that the energy values were accurate to 27-35 significant

digits.
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Table 3: Comparison of the nonrelativistic energies of the ground state of a helium atom.

Author (year) Ref. N Energy (in a.u.)

Drake et al. (2002) [11] 2358 —2.903724377034119598311

Korobov (2002) [9] 5200 —2.90372437703411959831 1159

Schwartz (2006) [1] 24099 —2.90372437703411959831 1159245194 40444 66969 25310

Nakashima, Nakatsuji (2007)  [12] 22709 —2.90372437703411959831 1159245194 40444 66969

this work [2] 22000 —2.90372437703411959831 1159245194 40443
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