
P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through
Containerisation in KM3NeT

Tamás Gál for the KM3NeT Collaboration∗

Erlangen Centre for Astroparticle Physics, Erlangen (Germany)
E-mail: tgal@km3net.de

In this contribution we discuss of how we implemented procedures for maintaining and develop-
ing software and preserving data processing pipelines in KM3NeT using containerisation tech-
nologies and continuous integration.

The New Era of Multi-Messenger Astrophysics - Asterics2019
25 - 29 March, 2019
Groningen, The Netherlands

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:tgal@km3net.de


P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through Containerisation Tamás Gál for the KM3NeT Collaboration

1. Introduction

One crucial aspect of scientific research is interoperability and reproducibility. Methods, pro-
cedures, software and even hardware can be documented easily but a big challenge is to preserve
software and data in a way that it remains re-usable on current and next generation computing
systems. The KM3NeT collaboration [1] has defined and developed workflows based on state of
the art containerisation tools and techniques to achieve these goals while minimising the com-
patibility requirements. The web-based open source Git-repository manager GitLab [2] provides
all the ingredients for future-proof software development including essential features like version
management, issue tracking, discussion platforms and continuous integration. The continuous inte-
gration is based on Docker [3], which performs operating-system-level virtualisation – also known
as containerisation – and is used to declare the environment needed to run a specific software.
Each software project is developed, compiled and tested in an isolated and independent container
and later also deployed to a target production system as a single bundled image including all re-
quirements. These so-called Docker images serve as a starting point for Singularity [4] images,
which is another containerisation solution specifically designed to run on High Performance Com-
puting (HPC) clusters and thus is well suited for fully reproducible analysis chains running on
large and sometimes heterogeneous computer clusters and grids. Singularity images are already
successfully used in production pipelines of the ANTARES experiment [5] and have proven to be
a convenient solution with minimal setup, maintenance and compatibility requirements. In order
to coordinate and describe such pipelines, a scheme using the Common Workflow Language has
also been defined. The strategy behind these methods and their general applicability are presented
in this contribution.

2. Containerisation

Containerisation is the encapsulation of a system environment which runs directly on the ker-
nel of the host system and has limited access to its resources. Depending on the implementation,
the environment is either almost fully isolated or integrates itself to the host environment. It was
primarily designed for micro-service virtualisation and allows to run multiple instances of contain-
ers on a single machine without the performance drawbacks of virtual machines. Isolation, flexible
resource allocations and prioritisation are the key features of enterprise solution containerisation
systems where lots of idling containers are common. For science on the other hand the require-
ments are quite different.

2.1 Requirements for Science

• Maximum performance needed.

• 100% reproducibility.

• Ability to interact with containers with standard user privileges.

• One container to utilise all available host sources.

• No need for resource isolation.

1



P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through Containerisation Tamás Gál for the KM3NeT Collaboration

2.2 Docker

Docker is a containerisation software designed for micro services, development and continu-
ous integration. It encapsulates the software in images, which consist of reusable "layers". This
layered design reduces the amount of data to be stored by sharing them between images, i.e. sev-
eral images can for example be based on a specific base operating system which only needs to be
stored once. Additional applications, libraries or custom configurations are then added as layers.
Official public repositories like Docker Hub or privately hosted Docker registries allow easy shar-
ing of images and layers. The downside of Docker containers however is that they may not be fully
reproducible due to complex layer dependencies which may change over time. The main benefit is
very high level of encapsulation – very similar to Virtual Machines but with native performance.
Docker containers however are designed to run isolated from the host environment and are not
meant and allowed to run on HPC (e.g. privileged permissions are required).

2.3 Singularity

Singularity is similar to Docker, but created for and by HPC engineers, scientists and Linux
developers. It does not require a root-owned base container daemon and runs under the initial
user’s privileges. Additionally it prevents privilege escalation via the kernel features. /home,
/dev, /sys and /proc are mounted from the host machine and a direct usage of host resources
(like network, file systems, devices etc.) is possible. These features make it safe for use in HPC
environments. It also supports Message Passing Interface (MPI) and can natively use GPUs by
default. Singularity is compatible to other container solutions – especially Docker, which is often
used in development pipelines. The containers are single-file based images and can be shared by
simply copying them to the target system, which only needs Singularity installed to run it. The
containerisation architecture of Singularity does not include as many isolation tweaks and thus it’s
a bit more performant than Docker, which was designed around micro-service process isolation.

3. Software Development Workflow

Through developments within the ASTERICS project, we have set up a system of container-
based software development, deployment and preservation - including data processing and data
analysis. This is based on a self-hosted GitLab instance where everyone has full access to file bugs,
feature requests and to discuss or follow other project relevant topics. Milestones and KanBan-
like boards – as shown in Figure 1 – help to communicate the development status of each project
and to attract collaborators. Continuous integration pipelines like in Figure 2 are used to test and
deploy our software and the corresponding documentation. The same technology is used to build
and publish container images after each software release.

3.1 Integration and Deployment Pipelines

The standards for developing, maintaining and archiving official KM3NeT software have been
defined. Every changeset occured during the software development triggers a continuous integra-
tion pipeline, as demonstrated in Figure 3. The pipeline is executed in isolated Docker containers
and ensures an independent and reproducible environment. A failure at any stage will be reported

2



P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through Containerisation Tamás Gál for the KM3NeT Collaboration

Figure 1: KanBan board of a KM3NeT software project.

Figure 2: A typical continuous integration pipeline of a KM3NeT software project.

to the project developers and maintainers who participated in the changeset. Additional stages are
executed when releasing a software version to create dedicated Docker and Singularity images to
be used for further developments and analysis chains respectively The software used to orchestrate
the version control, related discussions, running of pipelines and releasing images for production
is provided by GitLab

3.2 Distribution of Software

Docker images of commonly used software are regularly pushed to a self-hosted docker reg-
istry to be used in production or reused in other development pipelines which depend on them.
Singularity images are published through an SFTP server.

4. Analysis Chains

Modern cloud (grid) computing consists of heterogeneous operating systems which are con-
stantly maintained and updated, which raises a big challenge to organise and install the required
software and its dependencies on them. Singularity images provide a way to distribute an all-in-
one package which stays persistent and reproducible regardless of the changes of the host system.
This technology is already successfully utilised in ANTARES analysis pipelines. For KM3NeT
a similar approach has already been implemented and tested, including the full integration of the

3



P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through Containerisation Tamás Gál for the KM3NeT Collaboration

Figure 3: Pipelines triggered on each update of the software project.

software development pipeline. To describe the analysis chains and make them easily portable, the
Common Workflow Language [6] (CWL) is currently being evaluated, which is a language to write
analysis workflows and tools in a portable and scalable way accross many software and hardware
environments like workstations, clusters, cloud or HPC environments. CWL combined with Sin-
gularity is a powerful tool to minimise efforts in maintenance, compatibility and reproducibility in
heterogeneous computational environments.

References

[1] S Adrián-Martínez et al. Letter of intent for KM3net 2.0. Journal of Physics G: Nuclear and Particle
Physics, 43(8):084001, jun 2016.

[2] Gitlab. https://www.gitlab.com. Accessed: 2019-06-15.

[3] Docker. https://www.docker.com. Accessed: 2019-06-15.

[4] Singularity. https://www.sylabs.io. Accessed: 2019-06-15.

[5] M. Ageron et al. ANTARES: the first undersea neutrino telescope. Nucl. Instrum. Meth., A656:11–38,
2011.

4



P
o
S
(
A
s
t
e
r
i
c
s
2
0
1
9
)
0
2
7

Data and Software Preservation through Containerisation Tamás Gál for the KM3NeT Collaboration

[6] Peter Amstutz, Michael R. Crusoe, Nebojša Tijanić, Brad Chapman, John Chilton, Michael Heuer,
Andrey Kartashov, Dan Leehr, Hervé Ménager, Maya Nedeljkovich, Matt Scales, Stian Soiland-Reyes,
and Luka Stojanovic. Common Workflow Language, v1.0. 7 2016.

5


