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The distribution of arrival directions of cosmic rays is remarkably isotropic, which is a conse-
quence of their repeated scattering in magnetic fields. Yet, high-statistics observatories like Ice-
Cube and HAWC have revealed the presence of small-scale structures at levels of 1 part in 10,000
at hundreds of TeV, which are not expected in typical diffusion models of cosmic rays. We follow
up on the suggestion that these small-scale anisotropies are a result of cosmic ray streaming in a
particular realisation of the turbulent magnetic field within a few scattering lengths in our local
Galactic neighbourhood. So far, this hypothesis has been investigated mostly numerically, by
tracking test particles through turbulent magnetic fields. For the first time, we present an analyt-
ical computation that through a perturbative approach allows predicting the angular power spec-
trum of cosmic ray arrival directions for a given model of turbulence. We illustrate this method
for a simple, isotropic turbulence model and we find remarkable agreement with the results of
numerical studies.
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1. Introduction

The arrival directions of cosmic rays (CRs) are highly isotropic. Usually, this is explained as
a consequence of pitch-angle scattering between CRs and turbulent magnetic fields. If the large-
scale distribution of CR sources results in a spatial gradient, quasi-linear theory [1, 2, 3, 4, 5]
predicts a small dipole anisotropy. Yet, observations show fluctuations on smaller scales, down
to 10◦ degrees. These small-scale anisotropies are conveniently quantified by the angular-power
spectrum, defined as

C`(t)≡
1

4π

∫
d p̂ppA

∫
dp̂ppBP̀ (p̂ppA· p̂ppB) fA fB , (1.1)

where we use the abbreviation p̂pp = ppp/|ppp| and fA = f (0,rrr0, pppA), etc. Small-scale anisotropies are
not present in the usual quasi-linear theory with uniform pitch-angle scattering. (See however
Ref. [6]). For a recent review on observations and interpretations of the small-scale anisotropies
see Ref. [7]

One of the arguably most attractive explanations of the small-scale anisotropies is that they
are due to magnetic turbulence itself [8, 9, 10]. Standard quasi-linear theory only predicts the
ensemble-averaged phase-space density 〈 f 〉 and we can therefore only predict the angular power
spectrum Cstd

` obtained from Eq. (1.1) through fA fB → 〈 fA〉〈 fB〉. Under the commonly used as-
sumptions Cstd

` ∼ 0 for `≥ 2. (See again Ref. [6] for modifications to this simple picture.) However,
it is easy to see that in the ensemble-average the angular power spectrum 〈C`〉 can have small-scale
power, i.e. 〈C`〉 >Cstd

` , if 〈 fA fB〉 > 〈 fA〉〈 fB〉. In other words, if there are correlations between the
fluxes of CRs arriving under an angle θ ≡ arccos(p̂ppA· p̂ppB)∼ π/` (with ` the orbital quantum num-
ber corresponding to this angle θ ) then the average angular power spectrum 〈C`〉, computed from
the ensemble average of the product of phase-space densities, will be larger than the standard angu-
lar power spectrum Cstd

` , computed from the product of ensemble-averaged phase-space densities.
Therefore, correlations lead to small-scale anisotropies.

These correlations are to be expected if particles propagate through a turbulent magnetic field:
Particles arriving under an angle θ will have experienced similar fields for a certain amount of time
before observation. It can be motivated [9] that this time is of the order τsc/(`(`+1)) where τsc is
the scattering time. It is therefore ultimately the spatial correlations of the turbulent magnetic field
that are reflected in the angular correlations of CR arrival directions.

In the following we will predict the angular power spectrum Eq. (1.1) in an extended quasi-
linear theory, taking into account the angular correlation between phase-space densities. We will
consider the case with an isotropic turbulence tensor and without regular magnetic field. In this
configuration, the unperturbed trajectories are straight lines, thus particles are propagating ballisti-
cally.

2. Single-Particle Propagator

In the following, we will make use of a diagrammatic formalism for solving stochastic differ-
ential equations, as used for instance in propagation of waves through random media. Here, we
briefly review this formalism to fix our notation. We refer the interested reader to Refs. [11, 12] for
details.
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The problem of propagation of (relativistic) charged particles through a static regular and
turbulent magnetic field BBB0 and δδδBBB(rrr) can be formulated using Liouville’s equation for the phase-
space density f = f (rrr, ppp, t),

∂t f + c p̂pp·∇∇∇ f +L0 f =−δL (t) f , (2.1)

with the deterministic and stochastic Liouville operators

L0 =−iΩΩΩ·LLL and δL =−iωωω(rrr)·LLL , (2.2)

where ΩΩΩ = qBBB0/p0 and ωωω(rrr) = qδδδBBB(rrr)/p0 are the (relativistic) gyrovectors of the regular and
turbulent field, respectively, and Li ≡−iεi jk p j∂pk are angular momentum operators.

In the following, we will assume that the spatial dependence of the phase-space density can be
approximated by the first two terms of a Taylor expansion,

f (rrr, ppp, t)' f�(ppp, t)+(rrr− rrr�)·GGG . (2.3)

where f�(ppp, t)≡ f (rrr�, ppp, t) denotes the local phase-space density and GGG a constant gradient vector.
With this ansatz, the Liouville equation 2.1 evaluates to

∂t f�+L0 f�+δL f� ' c p̂pp·GGG . (2.4)

This can be formally solved as

f�(ppp, t)'Ut0,t f�(ppp, t0)+
∫ t

t0
dt ′Ut ′,tc p̂pp·GGG =Ut0,t f�(ppp, t0)+∆rrr(t0)·GGG , (2.5)

with ∆rrr(t0)≡ rrr(t0)−rrr� and the aid of the time-evolution operator (also called propagator), written
using the time-ordered (“latest–to–left”) exponential,

Ut,t0 = T exp
[
−
∫ t

t0
dt ′ (L 0 +δL (t ′))

]
=U (0)

t,t0 T exp
[
−
∫ t

t0
dt ′
(

U (0)
t ′,t0

)−1
δL (t ′)U (0)

t ′,t0

]
. (2.6)

Here, U (0)
t,t0 denotes the free propagator,

U (0)
t,t0 = exp [−(t− t0)L 0] . (2.7)

Note that U−1
t,t0 =Ut0,t , which we use in Eq. (2.5).

What complicates the solution of Eq. (2.1) is the stochastic nature of δL (t ′). One can only
hope to predict moments of the propagator, its first moment being the expectation value. In the
Gaussian limit, the expectation value of the propagator, 〈Ut,t0〉 contains only two-point functions of
δL (t ′),

〈δL (tn)δL (tn−1) . . .δL (t1)〉= 〈δL (tn)δL (tn−1)〉 . . .〈δL (t1)δL (t0)〉+permut. , (2.8)

for even n and vanishes identically for odd n. The expansion of Eq. (2.6) becomes algebraically
complex very quickly. It can be diagrammatically written in a more economic form,

= + + + + + . . .

1

(2.9)
Here, solid lines represent free single-particle propagators U (0)

t,t ′ , dots correspond to insertions of
δL (t ′) and dotted lines connecting such dots represent the expectation value of the two δL ’s that
it connects. All intermediate time variables are integrated over.
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3. Pair Propagator

The small-scale anisotropies are a consequence of the fact that the trajectories of a pair of CRs
are correlated for a (finite) amount of time before observation. Therefore, we need to consider
the ensemble average of products of phase-space densities when computing the angular power
spectrum. Note that in standard quasi-linear theory, we compute the ensemble average of single
phase-space densities and are therefore missing the correlations between pairs of CR particles.

In the following, we will use the abbreviations fA(t)≡ f�(pppA, t), etc. From eq. (2.5), we find
for the ensemble average of the product of phase-space densities,

〈 fA(t) f ∗B(t)〉 '〈UA
t0,tU

B∗
t0,t〉〈 fA(t0) f ∗B(t0)〉+ 〈(∆rrrA(t0)·GGG)UB∗

t0,t〉〈 f
∗
B(t0)〉

+ 〈(∆rrrB(t0)·GGG)UA
t0,t〉〈 fA(t0)〉+ 〈(∆rrrA(t0)·GGG)(∆rrrB(t0)·GGG)〉 (3.1)

In our previous analysis [10] we identified the last term on the right of Eq. (3.1) as the term that
determines the asymptotic behavior of the power-spectrum for large look-back times, t− t0� ν−1.
ν can be interpreted as a scattering time and contains integrals over the two-point functions of the
turbulent field ω(rrr). Here, we aim to establish a differential equation in quasi-linear theory based
on Eq. (3.1). Note that we have assumed that correlations between the propagators and the initial
state f�(ppp, t0) can be ignored.

By virtue of the Bethe-Salpeter equation [13], the double propagator can be expanded into a
perturbative series. This series has a diagrammatic representation, somewhat similar to Feynman
diagrams employed in quantum field theory,

〈UA
t,t0U

B∗
t,t0〉 = +

(
+ +

)
+

(
+

+ + + + + + +

+ +

)
+ . . .

1

(3.2)
If the dashed lines are connecting the Liouville operators δL of two different particles A and

B, then this can be considered an interaction between particles A and B mediated by the correlation
structure of the turbulent magnetic field. It is the repeated action of these “interactions” that is
inducing the correlations between particles A and B.

While eq. (3.1) allows computing the APS anytime after preparing the initial state, f (p̂pp, t0),
evaluating or even resumming all diagrams of Eq. (3.2) in all generality seems challenging at
the very least. Instead, we seek to approximate the identity (3.1) by the stationary solution of a
differential equation with respect to a small step in look-back time ∆T ≡ t− t0,

1−〈UA
t0,tU

B∗
t0,t〉

∆T
〈 fA(t0) f ∗B(t0)〉

' (φ�−3 p̂ppA·K·GGG)

(
∆rrrB

∆T
·GGG
)
+

(
∆rrrA

∆T
·GGG
)
(φ�−3p̂ppB·K·GGG)+O(∆T ) , (3.3)
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where we applied the quasi-stationary solution of the diffusion equation 〈 fA(t0)〉 ' φ�−3p̂ppA ·K ·GGG.
In this limit ∆T → 0, we can approximate ∆rrr/∆T ' −p̂pp. This allows writing down an ordinary
differential equation for the angular power spectrum C`,

A``0C`0(t)'
8π

9
K|GGG|2δ`1 , (3.4)

where we assume isotropic diffusion Ki j = Kδi j and define the transition matrix

A``0(t0) = lim
t0→t

δ``0−M``0(t, t0)
t− t0

(3.5)

and where

M``0(t, t0) =
1

4π

∫
d p̂ppA

∫
d p̂ppBP̀ (p̂ppA· p̂ppB)〈UA

t,t0U
B∗
t,t0〉

2`0 +1
4π

P̀ 0(p̂ppA· p̂ppB) . (3.6)

Once we have computed M``0(t, t0), it is easy to find the steady-state angular power spectrum
Cstdy by solving

A``0C
stdy
`0

(t) =
8π

9
K|GGG|2δ`1 . (3.7)

In evaluating 〈UA
t,t0U

B∗
t,t0〉, we confine ourselves to considering the leading and next-to-leading

order terms, that is the first line of Eq. (3.2). We label the contributions of those diagrams to the
double propagator as follows,

(
〈UA

t,t0U
B∗
t,t0〉

)
0
=

1

,
(
〈UA

t,t0U
B∗
t,t0〉

)
1a

=

1

, (3.8)

(
〈UA

t,t0U
B∗
t,t0〉

)
1b

=

1

,
(
〈UA

t,t0U
B∗
t,t0〉

)
1c

=

1

. (3.9)

Evaluating Eq.(3.6) for all diagrams/contributions of Eqs. (3.8) and (3.9) we find (see [14] for
details),

M0
``0

= δ``0 . (3.10)

M(1a)
``0

=−8π

3
δ``0

(
Λ0(∆T )− 1

2
Λ2(∆T )

)
`(`+1) . (3.11)

M(1c,0)
``0

=
8π

3 ∑
`A

(2`A +1)κ`A`A(t− t0)

(
` `A `0

0 0 0

)2

(2`0 +1)`0(`0 +1) , (3.12)

M(1c,2)
`,`0

=
4π

3
`0(`0 +1)(2`0 +1)(

`0 2 `0

0 0 0

) (−1)`0 ∑
`A,`B

ı`A+`Bκ`A`B(t− t0)(2`A +1)(2`B +1)

×
{

2 `0 `0

` `A `B

}(
2 `A `B

0 0 0

)(
` `A `0

0 0 0

)(
` `B `0

0 0 0

)
. (3.13)

Here, we have defined

Λ`A(∆T )≡
∫

∆T

0
dT
∫ T

0
dτ

∫
dk g(k) j`A(kτ) , (3.14)

κ`A`B(∆T )≡
∫ k1

k0

dk
g(k)
k2

∫
∆T

0
dτA j`A(kτA)

∫
∆T

0
dτB j`B(kτB) , (3.15)

4
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and

κ`A`B(∆T )≡
∫ k1

k0

dk
g(k)
k2 h`A (k,∆T )h`B (k,∆T ) , (3.16)

and (······) denotes the Wigner 3 j-symbol and {······} the Wigner 6 j-symbol.
Eventually, we compute M``0 = M(0)

``0
+ 2M(1a)

``0
+ M(1c,0)

``0
+ M(1c,2)

``0
(see Eqs. (3.10), (3.11),

(3.12) and (3.13)), determine A``0 from Eq. (3.5) and find the steady-state angular power spectrum
from eq. (3.7).

4. Validation

In order to validate the results of our analytical computation we now compare to numerical
results following the method in Ref. [10]. The power spectrum can be derived from the last term
of Eq. (3.1) in the limit ∆T → ∞. We have back-tracked test-particles in isotropic turbulent mag-
netic fields with band-limited white-noise spectrum. We have not assumed any regular component.
Specifically, we have chosen k0rg = 10−3 and k1rg = 102, with rg the particles gyroradius in the
RMS turbulent field. This guarantees that there is a broad enough range of wavenumbers to be
in resonance with (rgkres ≈ 1, kres being the resonant wave number) while satisfying the require-
ment k1/k0 � 1. The numerical backtracking results in a set of trajectories that converge at rrr�.
Thanks to Liouville’s theorem, we can use this to compute the angular distribution at position rrr�
and time t by assuming a certain phase-space density at time t0. To make the connection with our
analytical approach, we adopt the same gradient dependence as in Eq. 2.3. For each of 100 ran-
dom realisations of the turbulent magnetic field, we compute the angular power spectrum from the
phase-space density at position rrr� and time t and finally compute the ensemble averaged angular
power spectrum.

1 5 10 15 20

10 5

10 4

10 3

10 2

10 1

100

C

analytical (k1c T = 5)
analytical (k1c T = 10)
analytical (k1c T = 50)
analytical (k1c T = 100)

t = 2
t = 10
t = 20

k0rg = 0.0010, k1rg = 100.0

Figure 1: Validation of the analytical method by comparison with numerical result. The data points show the
angular power spectrum determined in testparticle simulations for three different backtracking times t− t0
after subtraction of the estimated shot noise. The shot noise levels due to the finite number of trajectories
is indicated by the horizontal dashed lines. For comparison, the lines show the results of our analytical
approach with different values of the free parameter k1c∆T . Fixing this free parameter to k1c∆T ≈ 50 results
in excellent agreement with the test-particle simulations.
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In Fig. 1, we show this ensemble averaged angular power spectrum for three different back-
tracking times (t− t0). It can be seen that the angular power spectrum converges to an asymptotic
form Ωt & 10 where Ω is the gyro frequency in the RMS turbulent field. (See also Ref. [10].) Com-
paring with the analytical results allows fixing the free parameter, k1c∆T , for which we otherwise
only have the constraint k1c∆T � 1. It appears that k1c∆T ≈ 50 gives excellent agreement between
analytical and numerical results.

5. Results

1 5 10 15 20 25 30

`

10−10

10−9

10−8

10−7

10−6

10−5

10−4

C
`

k1c∆T = 1

k1c∆T = 10

k1c∆T = 50

k1c∆T = 102

k1c∆T = 103

k1c∆T = 104

HAWC and IC (2017)

HAWC (2018)

1 5 10 15 20 25 30

`

10−10

10−9

10−8

10−7

10−6

10−5

10−4

C
`

k1c∆T = 1

k1c∆T = 10

k1c∆T = 50

k1c∆T = 102

k1c∆T = 103

k1c∆T = 104

HAWC and IC (2017)

HAWC (2018)

Figure 2: The angular power spectrum computed in quasi-linear theory for different values of k1c∆T , with-
out (left panel) and with (right panel) adding the noise contribution. For comparison, we also show the
observations by HAWC [15] and the IceCube-HAWC combined data [16] with the shot noise level esti-
mated for the latter.

While the band-limited white-noise spectrum serves only as an approximation for the magnetic
turbulence in our local environment, it is nevertheless instructive to compare our model predictions
to the power spectrum observed by HAWC and IceCube [15, 16]. The solide lines in Fig. 2 show
the steady-state angular power spectrum Cstdy derived by numerically solving Eq. (3.7). In the left
panel, we have fixed the gradient K|GGG|2 = 10−4ck0 and show the result for a range of k1c∆T . It can
be seen that with increasing values of k1c∆T , the normalisation of the angular power spectrum is
decreasing and the power spectrum tends to fall off much faster. We compare our model predictions
to the angular power spectra inferred from HAWC data [15] and the combined IceCube-HAWC
data [16]. Note that we have not accounted for the shot noise necessarily present in the data or for
cross talk between multipole moments due to IceCube’s limited field of view, see Ref. [7]. In the
right panel of Fig. 2, we do account for the effect of shot noise by adding a constant noise power of
N ' 1.5×109. This is reproducing the data from the combined analysis of HAWC and IceCube
data [16] which is dominated by shot noise above ` & 10. Overall, with α = k1c∆T ' 50 we find
good agreement with the data, again for K|GGG|2 = 10−4ck0.

6. Summary and Conclusion

We have presented a computation of the angular power spectrum C` of cosmic ray anisotropies
in quasi-linear theory, based on a perturbative expansion of the time-evolution operator. In partic-
ular, we have computed the C`’s as the steady-state solution of an ordinary differential equation for

6
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the time-evolution of the C`’s. For the power spectrum of small-scale magnetic turbulence we have
assumed band-limited white-noise. We have validated our approach with a numerical simulation
of particle trajectories in the same kind of turbulence. Applying our analytical results to data from
the HAWC and IceCube experiments we find remarkable agreement.
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