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Distributions of depth of shower maximum (Xmax) are parametrized and results are compared to
previous studies. Large samples of extensive air showers were simulated using the CONEX simu-
lation package in the energy range 1017−20 eV for four primary masses: proton, carbon silicon and
iron. Three functions are studied to parametrize the distributions of Xmax: exponentially modified
Gaussian (EMG), generalized Gumbel (GMB) and log-normal (LOG). Results allow for a direct
comparison between the proposed functional forms in terms of the Akaike information theory
and this comparison suggests that GMB function should be used in the description of Xmax data.
LOG distribution also provides reasonable fits for low-mass primaries while the EMG function
should be discarded. A parametrization of each function for each used hadronic interaction model
is discussed and a comparison to previous parametrizations is presented.
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1. Introduction

Determination of the mass composition of ultra-high energy cosmic rays (UHECRs) is of
paramount importance in the current astrophysics scenario. Constraints on models for cosmic ray
acceleration and propagation rely on the knowledge of the mass distribution of these particles.
Typically, experiments such as the Pierre Auger Observatory and the Telescope Array Observatory
infer the composition of primary particles by the indirect measurement of extensive air showers’
observables. The standard variable used in such analyses is the atmospheric depth at which a
shower reaches its maximum number of charged particles (Xmax) in terms of its first and second
moments [1, 2, 3]. Recent developments in detection techniques, however, have allowed the Pierre
Auger observatory to estimate the relative abundances of primary particles by directly fitting ob-
served Xmax data with expected distributions [4, 5]. A combined analysis of the UHECR flux and
their composition in view of Auger Xmax data also allowed for a study of UHECR sources [6].
Novel techniques for mass estimation [7, 8] and characterization of UHECR sources [9] also de-
pend on the understanding of the Xmax distributions.

Although the physics of extensive air showers is well understood in terms of particle interac-
tion processes, the complexity of such stochastic systems and the lack of a description of the bulk of
particle interaction processes do not allow for an analytical description of the so-called fluctuation
problem [10]. As a consequence, distributions of important variables such as Xmax have no known
functional form. This leads to the current experimental scenario where shower variables must be
interpreted by comparison to prescriptions of Monte Carlo simulations of the particle cascades.
Thus, an approach to the description of the fluctuations of shower variables from a theoretical point
of view is only possible by the parametrization of simulated quantities.

This contribution summarizes the results on a recent parametrization of Xmax distributions for
showers with energies between 1017 eV and 1020 eV [11] using three distinct functional forms. The
simulation procedure and the proposed functions are described in section 2. Section 3 presents the
fit results and compare the proposed functions. In section 4 a parametrization of Xmax distributions
in terms of primary energy and mass is discussed. Finally, section 5 provides a summary of this
contribution.

2. Description of Xmax distributions

Simulations of large samples of extensive air showers were performed within the hybrid ap-
proach of the CONEX package [12]. The set of primary particles includes proton, carbon, and
silicon with energies spanning the interval 1017 eV to 1020 eV in steps of 1 in log10(E0/eV).
Uncertainties in the modelling of hadronic interactions are taken into account by using three post-
LHC event generators, namely EPOS-LHC [13], SIBYLL2.3C [14] and QGSJETII.04 [15]. The
number of shower simulated for each primary, energy, and model combination is 106. Profiles
are sampled in steps of 10 g/cm2 and Xmax is extracted from each profile by means of a fit to
second-degree polynomial around the point of maximum number of charged particles. Anomalous
profiles [16] are excluded from this analysis as for those the depth of maximum cannot be defined
without ambiguity.

1



P
o
S
(
I
C
R
C
2
0
1
9
)
1
7
4

Parametrization of Xmax distributions Luan Arbeletche

Three distinct functions are proposed to fit the simulated Xmax distributions. The first studied
functional form, already proposed in [17], stems from the assumption that a primary particle enters
the atmosphere and interacts at a depth X f irst , whose distribution follows an exponential law with
decay parameter λ , and the distance in g/cm2 from X f irst to Xmax follows a normal distribution with
mean µ and variance σ2. The resulting function is an exponentially modified Gaussian distribution
(EMG), that reads

fEMG(x) =
1

2λ
exp
(
−x−µ

λ
+

σ2

2λ 2

)
erfc

(
µ− x+σ2/λ√

2σ

)
, (2.1)

where erfc(x) is the complementary error function.
The second function is the generalized Gumbel distribution (GMB), proposed in [18] to de-

scribe Xmax distributions. It follows from the consideration that Xmax has properties that relate to
the statistics of extremes, the field in which the GMB distribution arise. In fact, the GMB appears
as the correct distribution of the asymptotic sum of exponential variables with increasing ampli-
tudes [19], providing an interpretation of Xmax as a sum of multiple interaction lengths. The GMB
distribution is written as

fGMB(x) =
1
σ

λ λ

Γ(λ )
exp
{
−λ

[
x−µ

σ
+ exp

(
−x−µ

σ

)]}
. (2.2)

Finally, a third function is proposed: the shifted log-normal distribution (LOG). Although no
appealing direct relation of the LOG distribution to shower physics is possible, it is shown that it
provides a reasonable fit to Xmax simulated data.

fLOG(x) =

0 , if x≤ m
1√

2πσ

1
x−m exp

{
− [ln(x−m)−µ]2

2σ2

}
, if x > m .

(2.3)

Each of the three presented functions have three free parameters that are adjusted to fit the
simulated Xmax distributions for each combination of primary energy, mass and hadronic interaction
model. An unbinned likelihood scheme available in the ROOT framework [21, 20] is employed to
obtain the parameters that provide the best fit to data.

3. Results

In Fig. 1 some examples of fitted distributions are shown for the case of SIBYLL2.3C at 1020

eV. For the purpose of illustrating the simulated distributions, Xmax data from CONEX were binned
in intervals of 10 g/cm2 and those are shown as black dots with the corresponding statistical uncer-
tainty as bars. The small plots below each frame represent the deviations (pull) of each function
with respect to the data points. Primaries are indicated in the top-right corner of each plot. This
figure represents well the fact that the EMG distribution is not able to adjust itself to prescribed
Xmax distributions as it overestimates the number of events for both small and large Xmax values.
GMB and LOG distributions, on the other hand, are competitive in the case of SIBYLL2.3C at 1020

eV. Both these two distributions fit Xmax data reasonably well.
A statistical method is necessary in order to select the best among the set of proposed models

to describe Xmax data. In the present case of unbinned likelihood fits for models that are not nested,
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Figure 1: Examples of fits of Xmax distributions. The primary particle is indicated at the top-right corner of
each plot. Fit functions are shown as colored solid lines, while the simulated Xmax distribution is shown as
circular dots. The bottom panels show the deviation of each fitted function to the simulated point, defined
as the difference between the function and the point divided by the statistical uncertainty of the point. Only
results for SIBYLL2.3C are shown in this example. From [11].

the Wilks’ theorem [22] do not hold and one can not rely on the traditional likelihood-ratio test
and select models by computing p-values. Instead, based on the Akaike information theory [23], a
direct comparison of the maximized likelihood functions is presented. The process is as follows:
the model with the largest likelihood value is taken as a reference and the logarithm of the like-
lihood function is computed for this model (λmax); the log-likelihood differences (∆λi) of the i-th
to the reference model is computed; these differences, which coincide with the so-called Akaike
differences, give an estimate of how many information is lost by exchange the best model (the one
with λmax) by the i-th model.

In table 1 the values of ∆λi obtained in each fit are presented. Note that a model with a value of
zero in any case means that this is the best model for this case and also that small values of ∆λi do
not provide an argument for discarding a model in favor of others. In the case of proton and carbon
primaries, as can be seen in Table 1, the LOG distribution provides the best description of simulated
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Xmax data for all energies and hadronic interaction models, except in the case of EPOS-LHC with
carbon primaries. In this last case, the GMB provides a better fit.

For silicon and iron simulations, on the other hand, the GMB distribution is preferred in almost
all cases except for EPOS-LHC - silicon - 1020 eV and QGSJETII.04 - iron - 1020 eV. Note that the
large values of ∆λi for the EMG distribution in almost all cases suggests that this function should
be disregarded in Xmax analyses. Between the LOG and the GMB distributions, it is conservative
to say that differences between both descriptions are only marginal.

QGSJETII.04
Primary Proton Carbon Silicon Iron

log(E0/eV) 17 18 19 20 17 18 19 20 17 18 19 20 17 18 19 20
EMG 10113 11209 12226 12830 6636 6099 5181 5160 4213 3743 3447 3151 4920 5251 4875 4872
GMB 675 1044 1285 1397 131 105 32 104 0 0 0 0 0 0 0 19
LOG 0 0 0 0 0 0 0 0 402 381 384 330 202 79 81 0

EPOS-LHC
EMG 8932 10507 13115 14264 4325 3884 3728 3027 2156 1236 1315 0 1742 1066 1571 1563
GMB 28 573 1425 1865 0 0 0 0 0 0 0 475 0 0 0 0
LOG 0 0 0 0 232 293 262 272 526 629 643 1222 681 754 781 802

SIBYLL2.3C

EMG 9319 10117 11619 12648 11851 11493 11277 10987 6492 6637 6559 6269 6542 6282 5655 4954
GMB 420 666 1103 1362 914 805 760 713 0 0 0 0 0 0 0 0
LOG 0 0 0 0 0 0 0 0 247 182 123 139 326 379 495 538

Table 1: Relative log-likehood values (∆λi) of the fit of the unbinned Xmax distributions for the three hadronic
interaction models and primary particle energy ranging from 1017 to 1020 eV. From [11].

4. Parametrization in terms of primary energy and mass

Each function presented in section 2 and used to describe simulated Xmax distributions have
three parameters. The values of these parameters were obtained for combinations of four primary
masses and four primary energies. A functional form is proposed to describe the dependency of
these parameters with primary energy and mass:

θ(E0,A) = a(A)+b(A) log10 E0 + c(A)(log10 E0)
2 , (4.1)

where

a(A) = a0 +a1 log10 A+a2(log10 A)2 ,

b(A) = b0 +b1 log10 A+b2(log10 A)2 , (4.2)

c(A) = c0 + c1 log10 A+ c2(log10 A)2 .

For the values of ai, bi and ci and their statistical uncertainty the reader is referred to [11]. This
parametrization allow to describe Xmax distributions within the energy range 1017−20 eV for any
primary mass in the range 1-56. The uncertainty in the prescription of Xmax from the use of 4.1
and 4.2 can be quantified by evaluating the differences between the first and second moments
of parametrized distributions (par) to the simulated ones (MC). These differences are shown in
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Figure 2: Error on the first moment (upper plots) and second moment (lower plots) between the parametrized
distributions (par) and the simulated (MC) Xmax distributions.

figure 2. It is seem that the difference between first and second moments between simulated and
parametrized distributions are smaller than 2 g/cm2 and 3 g/cm2, respectively.

Similar parametrizations of the functions EMG and GMB were already performed into refer-
ences [17] and [18] with much smaller sets of CONEX simulations (103 for each energy - mass
- hadronic model bin). The effect of using large samples of simulated showers together with the
unbinned maximum likelihood approach of this work reflects into a more reliable parametrization
of Xmax distributions. This effect can be seen in figure 3, where the parametrizations of GMB and
LOG functions are compared to those of [17] and [18] at the energy of 1019 eV for proton (left)
and iron (right) primaries for the case of QGSJETII.04 simulations.
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Figure 3: Comparison of parametrization using equations 4.1 and 4.2 with parameters of [11] to those of
Peixoto et al. [17] and De Domenico et al. [18]. The case of proton (iron) primaries is shown in the left
(right) plot for an energy of 1019 eV and simulations with QGSJETII.04. From [11].
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The net effect of choosing one of the other available parametrizations instead of the ones
presented here can be quantified by the differences on first and second moments between distinct
parametrizations. Note that a direct comparison of the parametrizations in [17] and [18] with the
present ones is only feasible when the same hadronic model is used. This comparison is shown in
figure 4 for the cases of EPOS-LHC and QGSJETII.04 for the same functional forms used in these
references for proton and iron primaries. Deviations of 〈Xmax〉 from previous parametrizations can
be as large as 20 g/cm2. With respect to RMS(Xmax), these deviations can reach 12 g/cm2.
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Figure 4: Comparison between first (upper plots) and second (lower plots) moments of parametrized Xmax

distributions with parametrizations from [17] (left) and [18] (middle and right). The hadronic interaction
model is indicated with the boxes. From [11].

5. Summary

Determination of UHECR composition in current observatories depends on the knowledge
of the functional form of expected Xmax distributions. A parametrization of these distributions
was studied by means of three distinct functions, which were compared in terms of their relative
likelihoods. It was shown that the EMG function, proposed in [17], results in the overall worst
description of simulated distributions. The LOG distribution, proposed here, provides a competitive
description of simulated Xmax data along with the GMB distribution, proposed in [18]. The use of
the GMB distribution is suggested here as the best alternative as it provides the best likelihood in
most studied cases.

All three functional forms, having three free parameters each, were parametrized as a function
of the primary cosmic ray’s energy and mass. Comparison of these parametrizations to the simu-
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lated data sets reveal that the maximum expected deviation in 〈Xmax〉 and RMS(Xmax) is of 2 g/cm2

and 3 g/cm2, respectively.
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