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Interpretation of UHECR mass composition based
on CONEX simulations with revised inelastic cross
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Cosmic rays with energies exceeding 1020 eV have been detected thanks to indirect measurements
of primary particles by EAS observations. Thanks to increasing number of events registered by
fluorescence observatories like Telescope Array or Pierre Auger Observatory, we can try to solve
the main problems in cosmic rays physics. One of them, understanding of the mass composition,
require precise interpretation of measured EAS picture using monte-carlo simulations. Inelas-
tic cross-section for proton-air and nucleus-air is one of parameters plays main role during EAS
development and because of strong impact on Xmax position is very important for interpretation
of mass composition of primary particles. In this work, we present results of mass composition
analysis based on CONEX simulations with three commonly used high energy interaction mod-
els - QGSJETII-04, Sibyll2.3c and EPOS-LHC. For simulations we used revised by us inelastic
cross-sections extrapolated up to ultra high energies using geometrical model. As a results we
present that interpretation of mass composition depends not only on used high energy model or
experimental data set, but also on small differences in inelastic cross sections.
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1. Introduction

The development of EAS is phenomenon so complicated that the interpretation of its results
requires complex Monte Carlo simulations. Computer programs for these simulations should ac-
commodate different models of cascade development, and in particular, different models of the
first, most energetic interaction. Currently used models, based on accelerator data at energies many
times lower than those observed in cosmic rays. It is required to extrapolate parameters of these
models far to unmeasured energies. In this paper we present way for extrapolation of inelastic
nucleus-nucleus cross-section using prepared by us model of elastic scattering in geometrical pic-
ture. Based on this model, nucleus-nucleus cross sections have been calculated and implemented
in CONEX [1] program inside three quite popular high energy interaction models - EPOS-LHC
[2], Sibyll 2.3c [3, 4] and QGSJETII-04 [5]. Using these models, EAS development simulations
have been performed. Finally, we present discussion regarding interpretation of cosmic rays mass
composition in case of original and recalculated by us inelastic cross-sections.

2. Optical Model of scattering and extrapolated cross-sections

According to description of the optical model presented in [6], in case of nucleon-nucleon scat-
tering, differential elastic cross-section is related to the square of the scattering amplitude |F(s, t)|2.
This may be expressed by:

F(s, t) = i
∞∫

0

J0
(
b
√
−t
)

Γ(s,b) b db = i
∞∫

0

J0
(
b
√
−t
)
{1− exp [−Ω(s,b)]}b db . (2.1)

Transmission coefficient, so-called eikonal function Ω(s,b)) is defined by the convolution of
two colliding hadrons profiles D(b) in plane perpendicular to the beam axis, with fixed impact
parameter b:

D(b) =
∞∫
−∞

ρ(x,y,z)dz , (2.2)

We proposed the following form of the hadron matter distribution in nucleon:

ρh(r) =
1

8π

(
c1m3

1 e−m1|r|+ c2m3
2 e−m2|r|

)
. (2.3)

As a result, we have four energy-depends parameters model of hadron matter distribution.
c1 and c2 are normalization constants while m1 and m2 are slopes of two proposed exponential
functions. Next step was to obtain correct values of these parameters. It have been done based on
the differential elastic cross section distributions measured in accelerators in the energy range from
10 GeV to 8 TeV in c.m.s. In the Fig. 1 we present revised values of these parameters. Accuracy
of these fits are presented for three selected energies in Fig. 2 (left) by comparison of calculated
amplitudes with experimental data.
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Figure 1: Four energy depends parameters of hadron matter distribution ρh(r). c1,2 represents normalization
constants while m1,2 represents slopes of the exponential fractions.

In general, eikoanl is a complex function. Relation between real and imaginary part is intro-
duced by energy-depends function λ (s), representing real part of eikonal:

χ(b,s) = (i+λ (s)) ·Ω(b) (2.4)

]
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Figure 2: Proton-proton amplitudes calculated with model and compared with experimental data for three
selected energies (left), and calculated elastic, inelastic and total cross-sections compared with experimental
data in wide energy range (right)

Finally, with χ(b,s) we can express elastic, inelastic and total cross-section for proton-proton
scattering by:

σtot(s) = 2
∫ [

1−ℜ(eiχ(b,s))
]

d2b (2.5)

σel(s) =
∫ [

1− eiχ(b,s)
]2

d2b (2.6)
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σinel(s) =
∫

1−
[
eiχ(b,s)

]2
d2b (2.7)

Taking parameters plotted in Fig. 1 and using equations 2.5, 2.6 and 2.7, the discussed cross-
sections for proton-proton collisions have been calculated. Results are presented and compared
with experimental data in Fig. 2 (right)

In the last step, we have calculated inelastic cross-sections for the nucleus-Air case, based on
the pure Glauber theory. Taking into account, previously presented hadron matter distribution, we
used Woods-Saxon distribution of the nucleons in the nuclei. As a result in Fig. 3 we present calcu-
lated cross-sections in case of proton-Air (left), and Fe-Air (right) interactions. Air is a composition
of He, O, and N nuclei with appropriate weight. Results are presented in comparison with related
values of cross-sections used in QGSJETII-04, EPOS-LHC and Sibyll2.3c high energy interaction
models.
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Figure 3: Calculated inelastic cross-sections in case of p-Air (left) and Fe-Air (right) interactions, compared
with valued used in three models in CONEX software.

3. Simulations of EAS development with CONEX

Calculated cross-sections have been implemented to the three high energy interaction models
- QGSJETII-04, EPOS-LHC and Sibyll 2.3c to perform simulations of the longitudinal EAS de-
velopment. Models have been not modified. The only modification concerned σ inel

p−Air and σ inel
N−Air

cross-sections. Then, we performed simulations in four points on the energy scale from the 108

GeV to the 1011 GeV in the laboratory system. For each energy, we simulated 500 showers.

4. Mass Composition

To determine mass composition based on performed simulations we chose following solution:
First, obtained Xmax distributions have been fitted by the two free parameters function in the form:

FΓ(Xmax) =
(Xmax− p)k−1

Γ(k)Θk · exp(−(Xmax− p)
Θ

) (4.1)

with k = 5.
This operation repeated for each data set gives us values of Θ and p parameters as a function of the
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Figure 4: Example of obtained Xmax values for QGSJETII-04 model. On the left fitted by FΓ(Xmax) function
distributions of Xmax in case of Glauber approach at E0 = 1019 eV. On the right - average values of Xmax

from simulations in case of proton (blue lines) and iron (red lines) as a primary particles.

atomic weight for all energies. Thin black lines in the Fig. 4 (left) represents the FΓ(Xmax) function
obtained by the interpolation of their parameters for three groups of nuclei: He, CNO and Ne-Si.
Composition of these functions separately for each energy, interaction models and cross-section
model (original or our Glauber) were used for fitting of measured Xmax distributions published by
Telescope Array [7] and PAO [8] experiments for several points on the energy scale. As a final
result, we obtained the preliminary values of the average mass number for each energy measured
by the experiments. Results of primary particles mass composition for three analyzed models in
case of Telescope Array and PAO experiment are presented in Figs. 5, 6 and 7.
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Figure 5: Mass composition for QGSJETII-04 model in case of Telescope Array data (left) and Pierre Auger
Observatory (right). Different colors represents two models of inelastic cross section extrapolations.
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Figure 6: Mass composition for EPOS-LHC model in case of Telescope Array data (left) and Pierre Auger
Observatory (right). Different colors represents two models of inelastic cross section extrapolations.
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Figure 7: Mass composition for Sibyll 2.3c model in case of Telescope Array data (left) and Pierre Auger
Observatory (right). Different colors represents two models of inelastic cross section extrapolations.

5. Conclusions

In this work we presented revised model of the extrapolation of inelastic cross sections for
nucleus-nucleus interactions up to cosmic ray energies. Calculated cross sections indicates good
agreement with experimental data in case of proton-proton scattering, what assuming the correct-
ness of the Glauber approach let us believe that nucleus-nucleus cross-sections are also calculated in
the proper way. Calculated cross-section have been implemented in simulation program - CONEX,
and in case of three commonly used high energy interaction models, simulations of longitudinal
EAS development have been performed. One conclusion is the most important: interpretation of
the primary cosmic rays mass composition from measured EAS signal strongly depends on the high
energy interaction model and experiment. Correct description and extrapolation of the high energy
models parameters like inelastic cross-section plays very important role in the interpretation of the
taken data.
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