PoS - Proceedings of Science
Volume 358 - 36th International Cosmic Ray Conference (ICRC2019) - DM - Dark Matter
Interpretation of the CALET Electron+Positron Spectrum concerning Dark Matter Signatures
H. Motz*, Y. Asaoka and S. Bhattacharyya
Full text: pdf
Pre-published on: July 22, 2019
Published on: July 02, 2021
Abstract
CALET (CALorimetric Electron Telescope) is in operation on the ISS since October 2015 and directly measures the electron+positron cosmic-ray spectrum up into the TeV-region with fine energy resolution and good proton rejection. Interpretations of the latest results published in [O. Adriani et al. PRL 120, 261102] regarding Dark Matter signatures are presented.
Limits on annihilation and decay of Dark Matter were calculated based on an analytic parametrization of the local electron and positron spectra, including a term representing the flux from nearby pulsars as the extra electron-positron-pair source responsible for the positron excess, which is fitted to CALET data and positron flux/fraction data of AMS-02.
The expected flux from Dark Matter is calculated with PYTHIA and DRAGON and added to the parametrization with increasing scale factor until reaching 95%CL exclusion, returning a limit on the annihilation cross-section or lifetime. By treating systematic uncertainties with known energy dependence as corrections to the fit function, limits were improved compared to all-random errors.
Structures appear in the spectrum, which have been investigated as potential Dark Matter signatures by looking for an improvement of the fit quality with addition of flux from Dark Matter. Thereby, annihilation of ~350 GeV or decay of ~700 GeV Dark Matter to electron-positron pairs is identified as a possible explanation of a step-like structure around 350 GeV. The significance of this signature, Dark Matter explanations of other spectral features and possible astrophysical alternatives are discussed.
DOI: https://doi.org/10.22323/1.358.0533
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.