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Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French
coast will instrument several megatons of seawater with photosensors. Its main objective is
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1. KM3NeT/ORCA

The KM3NeT research infrastructure is under construction at two sites in the Mediterranean
Sea. The KM3NeT/ORCA detector is located about 40 km off-shore of Toulon in the south of France.
Its main goal is to investigate atmospheric neutrinos with GeV energies, while KM3NeT/ARCA,
located roughly 100 km south-east of Sicily, aims to discover astrophysical neutrinos. The main
design principles, the scientific goals of the experiment and an overview of the software packages
employed to generate detailed Monte Carlo (MC) simulation datasets can be found in [1].

KM3NeT/ORCA will register interactions of all neutrino flavours with energies roughly above
3 GeV. The indirect recognition of such events proceeds via the detection of Cherenkov photons
induced by charged secondary particles created in neutrino-nucleon collisions. KM3NeT/ORCA
consists of a three-dimensional matrix of photosensors that are housed in glass spheres, denoted
as digital optical modules (DOMs), and arranged along vertical detection lines. These sensors
instrument several megatons of water. A particle interaction event induces a time series of detected
photons distributed spatially in the matrix. The different possible neutrino interactions can be
categorised into two main classes of light distribution, namely elongated, track-like events induced
mainly by muons, and shower-like events with spatially localised light emission.

All neutrino flavours can interact through the weak neutral current (NC) mediated by the
exchange of a Z0 boson. This interaction results in a particle shower composed mainly of hadrons,
while the scattered neutrino escapes undetected. An interaction via the weak charged current (CC),
with the exchange of a charged W boson, can also result in a hadronic shower at the interaction
vertex. Additionally, a lepton of the same family as the interacting neutrino is created and carries a
fraction of the energy of the incoming neutrino. Muons result in track-like events, while electrons,
due to their short radiation length, induce electromagnetic cascades, i.e. shower-like events.

Main backgrounds are track-like events induced by atmospheric muons entering the detector
from above and pure noise events induced by the radioactive decay of 40K and the light emission of
biological organisms. Typical event rates expected in the full KM3NeT/ORCA detector are mHz for
neutrino detections and several 10 Hz for background events.

Three main tasks need to be accomplished to perform neutrino analyses. Firstly, neutrino-
induced events must be recognized and separated from the large number of background events.
Secondly, the recognized neutrino events must be classified according to their flavour, or as a
proxy according to their event topology differentiated into track- and shower-like events. Finally,
the properties of the interacting neutrino, such as its direction of incidence and energy, must be
inferred. Until now for KM3NeT/ORCA, the event properties have been reconstructed using
maximum-likelihood reconstruction algorithms. Based on the resulting reconstruction parameters,
decision-tree based machine learning algorithms [2] have been used to suppress background and
deduce the event topology in order to approximately distinguish between the flavours νe, νµ, ντ.

Here we present for the first time the application of convolutional neural networks (CNNs)
to detailed MC simulations of the KM3NeT/ORCA water-Cherenkov neutrino detector with the
goal to provide a complete analysis pipeline starting from low-level detector data. To this end, a
Keras-based software framework, called "OrcaNet" 1, has been developed that simplifies the usage

1http://github.com/ViaFerrata/OrcaNet
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of neural networks for neutrino telescopes. Similar investigations and developments have already
been done in the context of KM3NeT/ARCA [3], [4].

2. Convolutional neural networks and data preprocessing

CNNs form a specialized class of deep neural networks. They are typically used in domains,
where the input can be expected to be image-like, i.e. in image or video classification. Therefore,
several changes are made in the architecture of CNNs compared to fully connected neural networks.
The neurons in a convolutional layer are arranged in three dimensions, called width, height and
depth. One of the main differences between convolutional layers and fully connected layers is that
the neurons inside a convolutional layer are only connected to a local region of the input volume. In
the convolution process, the local connection region of the input of a neuron is multiplied with a
weight matrix and the result is passed on to the next layer. In order to set up a basic convolutional
neural network, the convolutional layers are stacked. After the last convolutional layer, the multi-
dimensional output is projected onto one dimension. A small fully-connected network can then be
added, in order to connect the outputs of the last convolutional layer to the output neurons of the full
network.

Detailed MC simulations of the detector response have been produced for three distinct types
of triggered data, namely atmospheric muons, random noise and neutrinos. For neutrinos, all three
possible charged current interactions on nucleons and nuclei (νCC

e , νCC
µ , νCC

τ ) have been simulated,
while NC interactions are represented by νNC

e only, since the detector signature is identical for all
flavours. A signal in a photomultiplier (PMT) with a measured time range, for which the anode
voltage stays above a tunable threshold, is called a hit. The time resolution is of the order of
nanoseconds. In addition to the signal hits induced by the interactions of neutrinos and atmospheric
muons in the sensitive detector volume, simulated background hits due to random noise are added to
each event such that the simulated triggered data matches the real conditions as closely as possible.
After the hit simulation, several trigger algorithms that rely on causality conditions are applied.
These can be coincident hits on the same DOM during a certain amount of time. After the triggers
have fired to record an event, all hits that have led to the triggering decision are labelled as triggered
hits. Since the trigger algorithm is not fully efficient at identifying all signal hits, a larger time
window, about 3 µs, than the one defined by the triggered hits is saved for further analysis. For each
hit in a simulated event, the PMT identifier, and thus the relative coordinate, of the hit PMT in a
DOM is recorded. Additionally, the starting point when the PMT signal surpasses the threshold
and the Time-over-Threshold (ToT) of each individual PMT are stored. The ToT value is not used
as input for the CNNs. In order to feed this four-dimensional event data to a CNN, the input hit
distribution must be pixelized. The spatial pixelization is defined in a way that exactly one DOM
fits into one bin. In the case of the full KM3NeT/ORCA detector, this results in a 11× 13× 18
(XYZ) pixel grid. The information, however, which PMT in a DOM has been hit, is lost. This is
fixed by adding a PMT identifier dimension to the pixel grid, resulting in a XYZP grid. Since one
DOM holds 31 PMTs, the final spatial shape of such an image is 11×13×18×31 (XYZP). The
indispensable piece of information still missing in these images is the time at which a hit has been
recorded. This information is added as an additional dimension, such that the final image of an
event is five-dimensional: XYZTP. Background hits are discriminated by selecting the time range
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Figure 1: Time distribution of about 3000
νCC
µ signal hits centred on the mean time

of the triggered hits for single events. The
dashed lines in black and red visualize pos-
sible time cuts.

in which most signal hits are found. Investigating the distribution of the deviation from the mean
of the triggered hit times in individual events, as depicted in Fig. 1 for νCC

µ events, shows that it is
asymmetric and that the relevant time range can be reduced significantly for the image generation
binning. Since the time range covered by triggered hits is different for each event, the time range
selection is defined relative to the mean time of the triggered hits for each event. As can be seen in
Fig. 1, only a small fraction of the signal hits is cut, as indicated by the dashed black lines.

After both the spatial as well as the temporal binning are applied, the resulting images are
five-dimensional: XYZTP. In order to define and train the CNNs, the software package TensorFlow2

has been used in conjunction with the Keras3 high-level neural networks application programming
interface. TensorFlow, however, does not support convolutional layers with more than three convolu-
tional dimensions, since five dimensional inputs are not a usual case in computer vision. Hence, the
five dimensions of the XYZTP images need to be reduced to four dimensions, such that one can
use three-dimensional convolutional layers. To this end, one image dimension is summed up, i.e.
the information of individual PMTs in a DOM is discarded, such that the resulting image is only
four-dimensional (XYZT). A second image of the same event is then fed to the network (XYZP) that
recovers the information which PMT in a DOM has been hit, but discards its hit time. Since these
images only differ in the 4th dimension, i.e. the channel dimension of a convolutional layer, the
images can be stacked in this dimension. Significant gains in performance for all CNN applications
in this work could be observed when using this stacking method, as compared to just supplying a
single XYZT image.

Using a Nvidia Tesla V100 GPU with CUDA 10, it has taken of the order of one to two weeks
to fully train the CNNs in this work.

3. Event classification

3.1 Background rejection

An essential part of the KM3NeT/ORCA reconstruction pipeline is the background classifier,
which discriminates atmospheric muons and random noise from neutrino-induced events. For

2http://www.tensorflow.org
3http://keras.io
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this purpose, the currently employed classification algorithm is based on a Random Forest (RF)
method [2]. The inputs of the RF are high-level observables (features), mainly determined from
likelihood-based track and shower reconstruction algorithms. The CNN network architecture for the
background classifier is based on the three-dimensional convolutional blocks introduced above, with
two additional fully-connected layers at the end. The output layer of the CNN is composed of two
neurons, such that the network only distinguishes between neutrino and non-neutrino events. As
outlined in Sec. 2, XYZP and XYZT images, that are stacked, are used as input to the network. For
both event images, a time cut has been defined along the lines introduced above. The total amount of
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Figure 2: Fraction of correctly selected
neutrino events with energies in the range
1 GeV to 100 GeV versus fraction of resid-
ual atmospheric muon contamination after
applying the CNN background classifier
(blue) and the RF classifier (orange). Er-
ror bars are statistical only. The neutrino
events have been generated according to
the Honda [5] atmospheric neutrino flux
model.

MC events used for the training is split equally into the three event classes: neutrinos, atmospheric
muons, and random noise. Hence the final class balance is 1/3 neutrino events and 2/3 non-neutrino
events. The event dataset is then split into 75% training, 2.5% validation, and 22.5% test events. In
total, the training data contains about 42.6×106 events. In order to compare the CNN performance
directly to the RF background classifier, only the events from the test dataset are used. To quantify
the performance of the CNN background classifier, the metric shown below is used to investigate
the number of remaining atmospheric muon events for a given threshold value p. The atmospheric
muon contamination, and the neutrino efficiency, are defined as: Cµ(p) = Nµ(p)/Ntotal(p) and
νeff(p) = Nν(p)/Nν,total. Here, Nµ is the number of remaining atmospheric muon or random noise
events, while Ntotal is the total number of remaining events, depending on the threshold probability
p. Regarding the neutrino efficiency, Nν(p) is the total number of neutrinos in the dataset as a
function of the threshold value and Nν,total is the number of neutrinos in the dataset, without applying
any threshold. Fig. 2 depicts neutrino efficiency νeff versus atmospheric muon contamination Cµ

for the CNN and the RF classifier. The CNN classifier performs better than the RF classifier. In
particular, in the regime in which most atmospheric muons are suppressed, the neutrino efficiency is
still significantly higher.

3.2 Separation between track- and shower-like neutrino event topologies

The architecture of the track-shower CNN and its input is essentially very similar to the
background classifier. The time cut for the hit selection is tighter than for the background classifier.
Since background events have already been rejected by the background classifier, the data presented
to the track-shower classifier are already mostly neutrino interactions. The event dataset is balanced
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Figure 3: Fraction of events classified
as track-like, i.e. with a track probabil-
ity > 0.5 for different interaction channels
(top panel) versus the true MC neutrino
energy. The power of the CNN classifier
to discriminate between νCC

µ events and
showering νCC

e / νNC channels, defined as
the difference of the fractions classified as
track-like, is improved with respect to the
RF classifier above the energy turn-on at
3GeV (bottom panel).

such that 50% of the events are track-like (νCC
µ ) and 50% are shower-like. The shower class consists

of 50% νCC
e and 50% νNC

e . Additionally, the dataset has been balanced in a way that the ratio of
track-like to shower-like events is always one and is independent of neutrino energy. This rebalanced
dataset is then split into 70% training, 6% validation, and 24% test events. In total, the training
dataset contains about 13×106 events. Fig. 3 (top panel) shows the fraction of events classified as
track-like as a function of neutrino energies in the range 1 GeV to 40 GeV and for different neutrino
interaction channels. An event is accepted as track-like if its probability to be track-like is 0.5 or
above. It can be seen that the separation power between track-like and shower-like events depends
significantly on the neutrino energy. The reason is that the hit distribution of low energetic νCC

µ

events can be similar to that of shower-like events, since the outgoing muon decays after propagating
only a short distance in the detector. The bottom panel shows the relative improvement in separation
power for different interaction channel combinations when comparing the CNN and RF classifier
performance. The performance gain is more important for neutrino energies below 15 GeV and
amounts to several percent, in particular in the important low-energy, efficiency-turn-on regime.

4. Event regression

The network architecture of the CNN for the event regressor is identical to the one for the
background and track-shower classifier, except for the fully-connected layers after the convolutional
layers. The properties to be reconstructed by the network are energy, direction, and vertex position
of the initial neutrino interaction. For direction and vertex, the CNN outputs are two arrays with
three elements each, containing the X, Y and Z components of the reconstructed direction and
vertex position vector. Consequently, the output of the network consists of seven reconstructed
floating-point numbers, denoted as~yreco.

5
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4.1 Energy and direction regression

Fig. 4 (left) shows the median relative error (MRE) as the median of the normalised residual
distribution |(Ereco−Etrue)/Etrue| of the reconstructed energy versus the true MC energy for pre-
selected νCC

e events. The performance of the CNN event regressor and of the maximum-likelihood
method agree very well. This is likely due to the fact that both methods come close to the intrinsic
energy reconstruction performance limit as dictated by light yield fluctuations of the hadronic
particle cascade [6].
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Figure 4: Left: median relative energy reconstruction error versus true MC energy for νCC
e events for the CNN

event regressor (blue) and the ORCA maximum-likelihood shower reconstruction algorithm (orange). Right:
median error in units of radians of the zenith angle and neutrino direction reconstruction versus true MC
energy for νCC

e events; for the CNN event regressor (green and blue line) and the ORCA maximum-likelihood
reconstruction algorithm (orange and red lines).

The median absolute error (ME) is defined as the median of the distribution of the residual
distribution for the reconstructed direction. The ME for both the full direction and the zenith angle
reconstruction is compared for the CNN event regressor and the maximum-likelihood method in
Fig. 4 (right) for νCC

e events. For energies below a few GeV, the ME is similar for both reconstruc-
tions, while the difference in performance increases in favour of the maximum-likelihood method
with increasing energy. However, further improvements of the CNN event regressor can be expected
in the future since no optimisation has been done yet for this first comparison. Similar comparison
results have been obtained regarding the reconstruction of track-like events.

4.2 Error estimate on the regression result

A neural network can be also used to estimate the uncertainties on the components of the recon-
structed~yreco. One possibility is to let the network predict the absolute residual of the mean absolute
error loss function. Thus, an additional neuron is needed that yields the reconstructed uncertainty,
σreco, for each of the reconstructed components of~yreco. Consequently, the loss function that mea-
sures the quality of the reconstructed uncertainty value is: L = 1

n ∑
n
i=1 (σreco−|ytrue− yreco|)2. Using

this loss function L, the network learns to estimate the average absolute residual: σreco ≈ 〈yabs〉.
Fig. 5 shows the standard deviation of the residual distribution of the reconstructed cosine of the
zenith angle for νCC

e versus the fraction of events discarded by the CNN uncertainty estimator. For
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all three energy intervals depicted, one can see that the zenith angle resolution improves significantly
when the events that have the largest reconstruction errors are discarded as predicted by the CNN.
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ual distribution of the reconstructed cosine
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e versus the frac-
tion of events discarded by the CNN uncer-
tainty estimator. The neutrino events have
been generated in three different energy in-
tervals as indicated by the three coloured
lines and according to the Honda [5] atmo-
spheric neutrino flux model.

5. Conclusion

In this work, the first application of deep convolutional neural networks to the reconstruction of
simulated neutrino events in KM3NeT/ORCA has been reported. Suitable CNNs have been designed
and tested. Large and detailed MC datasets have been suitably preprocessed to generate pixelized
high-dimensional image input for the CNNs. All tasks of the hitherto standard event reconstruction
and classification pipeline for KM3NeT/ORCA have been achieved using CNNs and performance
comparisons are shown based on the same MC datasets. Though not yet fully optimized, the
application of CNNs exhibits promising, and in many cases already better performances than the
standard methods.
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