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The electromagnetic coupling α and the electroweak mixing angle θW are parameters of the
Standard Model (SM) that enter precision SM tests and play a fundamental rôle in beyond SM
physics searches. Their values are energy dependent, and non-perturbative hadronic contributions
are the main source of uncertainty to the theoretical knowledge of the running with energy. We
present a lattice study of the leading hadronic contribution to the running of α and sin2

θW. The
former is related to the hadronic vacuum polarization (HVP) function of electromagnetic cur-
rents, and the latter to the HVP mixing of the electromagnetic current with the vector part of the
weak neutral currents. We use the time-momentum representation (TMR) method to compute the
HVP on the lattice, estimating both connected and disconnected contributions on Nf = 2+1 non-
perturbatively O(a)-improved Wilson fermions ensembles from the Coordinated Lattice Simula-
tions (CLS) initiative. The use of different lattice spacings and quark masses allows us to reliably
extrapolate the results to the physical point.

MITP/19-064
DESY 19-179

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

∗Speakers.
†Current affiliation: Theoretical Physics department, CERN, Geneva, Switzerland

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:marco.ce@uni-mainz.de
mailto:msanjosp@uni-mainz.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
1
0

The hadronic running of the electroweak couplings Marco Cè and Teseo San José

1. The running of the electromagnetic coupling

The predictions of the Standard Model (SM) of particle physics are today tested to a high
degree of precision in experiments that span a vast range of energy scales, from atomic physics
to high-energy colliders. The connection between these energy scales is encoded in the run-
ning with energy of the strength of interactions. For instance, the fine-structure constant α =

1/137.035999139(31) [1] is known from low-energy experiments to better than a part per billion.
However, its effective value for physics around the Z pole is α̂(5)(MZ) = 1/127.955(10) [1], a 7 %
larger value. In the on-shell scheme, the running of α at a given time-like momentum transfer q2 is
described by

α(q2) =
α

1−∆α(q2)
, (1.1)

in terms of the ∆α(q2) function. While the lepton contribution to ∆α(q2) can be computed in
perturbation theory, the estimate of the quark contribution at low energies requires non-perturbative
calculations of hadronic physics. Conventionally, the hadronic contribution ∆αhad(q2) is related
through the optical theorem to the R-ratio, i.e. the total cross-section e+e−→ hadrons over e+e−→
µ+µ−, which is estimated using a compilation of experimental data. This results in ∆α

(5)
had(M

2
Z) =

0.02764(7) [1] constituting the main contribution to the uncertainty on α(M2
Z). In an alternative

approach [2], the Adler function D(Q2) at space-like Q2 = −q2 is estimated from the same data
and used to compute the running up to Q2 ≈ 2GeV2. Around this Q2 and above, D(Q2) can be
computed reliably in perturbative QCD. Crucially, ∆αhad(−Q2) at space-like momenta Q2 > 0 is
accessible to non-perturbative lattice techniques defined in Euclidean space-time [3, 4, 5]. It is given
by

∆αhad(−Q2) = 4παΠ̄
γγ(Q2), Π̄

γγ(Q2) = [Πγγ(Q2)−Π
γγ(0)], (1.2)

where Π̄(Q2) is the subtracted hadronic vacuum polarization (HVP) function1

(QµQν −δµνQ2)Πγγ(Q2) = Π
γγ

µν(Q
2) =

∫
d4xeiQ·x 〈 jγ

µ(x) jγ

ν(0)
〉

(1.3)

of the electromagnetic current

jγ

µ =
2
3

ūγµu− 1
3

d̄γµd− 1
3

s̄γµs+
2
3

c̄γµc. (1.4)

Lattice QCD can thus provide an estimate that does not depend on experimental R-ratio data
and cross-check the phenomenological estimate. This is of great interest in the context of global
SM fits, where ∆αhad(M2

Z) is an input. Indeed, the best-fit result for the Higgs mass excluding
kinematic constraints is MH = 90+17

−16 GeV, 1.9σ below the measured value, and a shift of ±10−4

in ∆α
(3)
had(4GeV2) corresponds to a shift of ∓4.5GeV in MH [1]. This is connected to the tension

between the SM and experimental determinations of the anomalous magnetic moment of the muon
(g− 2)µ (see Ref. [6] for a review), because a solution of the (g− 2)µ puzzle that involves an
increase of the SM estimate of the leading hadronic contribution aHLO

µ has to avoid a correlated
increase of ∆αhad [7].

1In this work we denote with Π̄(Q2) with Q2 > 0 the HVP function at space-like momenta.
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A second connection to (g−2)µ comes from the high-precision measurement of α(−Q2) at
space-like Q2 in t-channel scattering proposed by the MUonE collaboration [8, 9]. Isolating the
hadronic contribution ∆αhad(−Q2), an independent determination of aHLO

µ is obtained from [10]

aHLO
µ =

α

π

∫ 1

0
dx(1− x)∆αhad(t(x)), t(x) =

x2m2
µ

x−1
≤ 0. (1.5)

The proposed experiment is limited to x < 0.932, corresponding to Q2 . 0.14GeV2, that leaves out
13 % of the aHLO

µ integral. Lattice data can complement the experiment for Q2 & 0.14GeV2 [11].

2. The running of the electroweak mixing angle

As a second quantity, we consider the electroweak mixing angle or Weinberg angle θW, that
is, the parameter of the Standard Model of particle physics that parametrizes the mixing between
electromagnetic and weak interactions

sin2
θW =

g′2

g2 +g′2
, e = gsinθW = g′ cosθW, (2.1)

where g and g′ are the SU(2)L and U(1)Y couplings, respectively. Beyond tree level, as the couplings
themselves, its precise value is scheme and energy dependent. In a given scheme, the mixing angle
is measured to sub-permille precision at energies around MZ , e.g. on-shell sin2

θW = 1−M2
W/M2

Z =

0.22343(7) or in the MS-scheme sin2
θ̂W(MZ)= 0.23122(7) [1]. Conversely, the mixing angle in the

Thomson limit, |q2| � m2
e , can be defined in a scheme-independent way [12, 13]. Its experimental

value is less well known, but upcoming experiments target up to a 0.15 % precision at a momentum
transfer of 4.5×10−3 GeV2 [14, 15]. A more precise value, sin2

θ̂W(0) = 0.23868(5)(2) [16], is
obtained computing the running in the MS-scheme from MZ to low energies. The first error is the
uncertainty on the Z-pole value, while the second error is the total theoretical uncertainty on the
running and it is dominated by the non-perturbative hadronic contribution.

The energy dependence of sin2
θW in the on-shell scheme can be written as

sin2
θW(q2) = sin2

θW
[
1+∆sin2

θW(q2)
]
, (2.2)

where sin2
θW is the value in the low-energy limit. Similarly to Eq (1.2), the leading hadronic

contribution to the running at space-like Q2 =−q2 is given by [17, 2]

∆had sin2
θW(−Q2) =− e2

sin2
θW

Π̄
Zγ(Q2), (2.3)

where Π̄Zγ(Q2) is HVP mixing of the electromagnetic current jγ

µ and the vector part of the neutral
weak current jZ

µ

jZ
µ

∣∣
vector = jT3

µ

∣∣
vector− sin2

θW jγ

µ , jT3
µ

∣∣
vector =

1
4

ūγµu− 1
4

d̄γµd− 1
4

s̄γµs+
1
4

c̄γµc. (2.4)

As in the electromagnetic case, Π̄Zγ(Q2) is directly accessible to lattice computations [3, 4, 18, 19].
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Figure 1: Left: the kernel K(x0,Q2) of the TMR integral in Eq. (3.1) divided by x3
0 for different values of

Q2, compared to the kernel for aHLO
µ [20, 21] (blue line), as a function of time x0. Right: contribution of

G(x0)K(x0,Q2) to the TMR integral normalized to the value of the integral, comparing different kernels
K(x0). The light coloured lines are drawn using a model for the Euclidean-time correlator G(x0) [20], that is
also used for the integral, while the data points with error bars are obtained using actual lattice correlator data
at the physical pion mass.

3. The TMR method

The computation of Π̄γγ and Π̄Zγ as functions of Q2 is similar to that of aHLO
µ , the leading-order

HVP contribution to (g− 2)µ , and, as in that case, different methods are available, such as the
four-momentum hybrid method, the time moments, or the time-momentum representation (TMR)
method [20, 22]. In this study, we employ the TMR method to compute the subtracted HVP function

Π̄(Q2) =
∫

∞

0
dx0 G(x0)

[
x2

0−
4

Q2 sin2
(

Qx0

2

)]
, G(x0) =−

1
3

∫
d3x

3

∑
k=1
〈 jk(x) jk(0)〉 , (3.1)

where we have to integrate over Euclidean time the product of the zero-momentum-projected
correlator, Gγγ(x0) or GZγ(x0), times a Q2-dependent kernel K(x0,Q2) = x2

0− (4/Q2)sin2(Qx0/2).
This allows us, in principle, to input any value of Q2 in the kernel. The properties of the kernel
significantly influence the systematics of the integral: On the one hand, a shorter-range kernel puts
a larger weight on the correlator at short times. Since the correlator on the lattice is sampled at
a spacing a, one needs Q2� (π/a)2 in order to avoid large cut-off effects. On the other hand, a
longer-range kernel weights relatively more the long-time behaviour of the correlator, which is
noisier and susceptible to finite-volume effects. Different kernels are compared in the left plot of
Figure 1, including the one used to compute aHLO

µ , Eq. (84) from Ref. [20]. In the right plot we show
the corresponding relative contribution to the integral against the time variable. The HVP function
Π̄ at Q2 = 0.1GeV2 receives the larger contribution around 1 fm, as aHLO

µ does, but at long times the
contribution to the former is smaller. When lattice data at physical pion masses is used for G(x0),

3
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Table 1: List of ensembles from the CLS initiative employed, with approximate lattice spacings, sizes and
pion and kaon masses. A * denotes the ensembles for which the disconnected contribution is available. All
ensembles have open boundary conditions in time, except those denoted with § that have periodic boundary
conditions in time. Values of tsym

0 and a are from Ref. [25].

T/a L/a tsym
0 /a2 a [fm] L [fm] Mπ , MK [MeV] MπL

H101 96 32 2.860 0.086 2.8 415 5.8
H102 96 32 2.8 355 440 5.0
H105* 96 32 2.8 280 460 3.9
N101 128 48 4.1 280 460 5.8
C101* 96 48 4.1 220 470 4.6

B450§ 64 32 3.659 0.076 2.4 415 5.1
S400 128 32 2.4 350 440 4.3
N401* 128 48 3.7 285 460 5.3

H200 96 32 5.164 0.064 2.1 420 4.4
N202 128 48 3.1 410 6.4
N203* 128 48 3.1 345 440 5.4
N200* 128 48 3.1 285 465 4.4
D200* 128 64 4.1 200 480 4.2
E250*§ 192 96 6.2 130 490 4.1

N300 128 48 8.595 0.050 2.4 420 5.1
N302* 128 48 2.4 345 460 4.2
J303 192 64 3.2 260 475 4.2

this results in a smaller statistical error on Π̄(0.1GeV2) than on aHLO
µ . In the case of Π̄(1GeV2),

the correlator tail has a negligible contribution to the statistical error.

4. Lattice setup

We perform the computation on the Nf = 2+1 set of ensembles from the Coordinated Lattice
Simulations (CLS) initiative [23], with tree-level Lüscher-Weisz gauge action and non-perturbatively
O(a)-improved Wilson fermions. The list of ensembles employed in this work is in Table 1. We use
four lattice spacings, u and d quark masses are degenerate, thus we have exact isospin symmetry,
and the pseudoscalar meson masses span from Mπ = MK ≈ 415MeV at the SU(3)-symmetric point
to the physical ones along a trajectory on which the sum of the bare u, d and s quark masses is kept
constant. We set the scale using (8tphys

0 )1/2 = 0.415(4)(2) fm [24, 25].

4.1 Flavour decomposition and renormalization

The correlators are computed on the ensembles in Table 1 as described in Ref. [26], to which
we refer to for the unexplained notation. At the sink, we employ both the local and conserved

4
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discretizations of the vector current

jl
µ(x) = q̄(x)γµq(x), (4.1a)

jc
µ(x) =

1
2
[
q̄(x+aµ̂)(1+ γµ)U†

µ(x)q(x)− q̄(x)(1− γµ)Uµ(x)q(x+aµ̂)
]
, (4.1b)

while only the local current is used at the source. The currents are non-perturbatively O(a)-improved
and renormalized. To this purpose, we introduce a flavour SU(3) decomposition of the current. For
the local discretization, we have [27]

j3,l
µ,R = ZV

(
1+3b̄V amav

q +bV amq,`
)

j3,il
µ , (4.2a)(

j8
µ

j0
µ

)l

R

= ZV

1+3b̄V amav
q +bV

a(mq,`+2mq,s)
3

(
bV
3 + fV

)
2a(mq,`−mq,s)√

3

rV dV
a(mq,`−mq,s)√

3
rV + rV (3d̄V +dV )amav

q

( j8
µ

j0
µ

)il

, (4.2b)

where the improved non-singlet and singlet local currents are

ja,il
µ = ja,l

µ +acl
V ∂̃νT a

νµ , j0,il
µ = j0,l

µ +ac̄l
V ∂̃νT 0

νµ , (4.3)

and the breaking of flavour SU(3) symmetry introduces a mixing between the singlet and non-singlet
I = 0 components. For the conserved discretization, no renormalization is needed

ja,c
µ,R = ja,c

µ +acc
V ∂̃νT a

νµ , j0,c
µ,R = j0,c

µ +ac̄c
V ∂̃νT 0

νµ . (4.4)

We use the renormalization and improvement coefficients determined non-perturbatively in Ref. [28].
Since the coefficients to renormalize the singlet local current are unknown, we use only the conserved
vector current for the singlet component. This implies that we can only put the Z current at the sink,
where the conserved discretization is available. Moreover, we set fV = 0 and c̄c,l

V = cc,l
V , which is

valid up to O
(
g5

0

)
and introduces a negligible error.

The charm contribution is also computed in the quenched approximation, with the charm quark
mass tuned using the experimental Ds meson mass and the local current renormalized computing
the mass-dependent Zc

V [26]. Including the latter contribution, the γγ and Zγ bare correlators are

Gγγ

µν(x) = G33
µν(x)+

1
3

G88
µν(x)+

4
9

Cc,c
µν(x), (4.5a)

GZγ

µν(x) =
(

1
2
− sin2

θW

)
Gγγ

µν(x)−
1

6
√

3
G08

µν(x)−
1
18

Cc,c
µν(x), (4.5b)

where the flavour SU(3) contributions are defined as2

G33
µν(x) =

1
2

C`,`
µν(x), (4.6a)

G88
µν(x) =

1
6

[
C`,`

µν(x)+2Cs,s
µν(x)+2D`−s,`−s

µν (x)
]
, (4.6b)

G08
µν(x) =

1
2
√

3

[
C`,`

µν(x)−Cs,s
µν(x)+D2`+s,`−s

µν (x)
]
, (4.6c)

and the connected and disconnected Wick’s contractions are

C f1, f2
µν (x) =−

〈
Tr
{

D−1
f1
(x,0)γµD−1

f2
(0,x)γν

}〉
, (4.7a)

D f1, f2
µν (x) =

〈
Tr
{

D−1
f1
(x,x)γµ

}
Tr
{

D−1
f2
(0,0)γν

}〉
. (4.7b)

2In the usual lattice notation, G`
conn = 2G33 and Gs

conn = 3G88
conn−G33. Moreover, G08

conn =
√

3(G33−G88
conn)/2.

5
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4.2 Autocorrelation study

Due to the update procedure of Monte Carlo simulations different configurations within one
chain are not independent. In order to give a reliable estimate of the observable’s uncertainty we
need to take these autocorrelations into account. For this work we have used the Γ-method [29, 30]
to estimate the autocorrelation time, τint and, from it, an appropriate bin size to obtain statistically
independent samples. Since autocorrelations are observable-dependent we have computed τint of
∆αhad for the light and strange flavours on each ensemble at different energies. Extra caution needs
to be taken regarding the tail of the correlator, which shows the signal-to-noise ratio problem (see
Section 4.4). To obtain a good estimate of τint we only take into account the correlator until a certain
maximum value of x0. Repeating the process for different time cuts, we know where the noise of the
tail starts to dominate and the value of τint. We choose a bin size B = 2τint for each ensemble to bin
the correlator data and obtain a distribution of independent bootstrap samples to carry out the main
analysis.

4.3 Finite-size corrections

In this work, we estimate finite-volume corrections using the same strategy described in
Ref. [26]. Namely, we compute the difference between the infinite- and finite-volume I = 1
correlator and apply it as a correction to the lattice data. We use two distinct models to compute the
difference, depending on whether the correlator is considered at short or long times.

At long times, we use the I = 1 correlator obtained from the time-like pion form factor Fπ(ω).
In infinite volume, that is

G33(x0,∞) =
∫

∞

0
dω ω

2
ρ(ω2)e−ωx0 , ρ(ω2) =

1
48π2

(
1− 4M2

π

ω2

) 3
2

|Fπ(ω)|2, (4.8)

while the finite volume expression is computed from the Lüscher energies ωn and the Lellouch-
Lüscher amplitudes,

G33(x0,L) = ∑
n
|An|2e−ωnx0 , (4.9)

extracted applying the Lellouch-Lüscher formalism [31, 32, 33]. In this work, we use the Gounaris-
Sakurai (GS) parametrization [34] of Fπ(ω), that depends on two parameters, mρ and gρππ , which
are obtained either by fitting the correlator at long times or by a spectroscopic analysis [26]. We
emphasise that the model is used only to correct for the relatively small finite-volume effect of
the correlator, while no modelling of the contribution from the correlator tail is assumed. In the
future, we plan to further reduce the model-dependence employing, where available, a full lattice
determination of Fπ(ω) [35, 36] instead of the GS parametrization.

The Fπ(ω)-based model provides a good spectral representation of the correlator up to the three-
pion threshold, thus we use it for the correlator correction at times x0 > x0i, with x0i = (MπL/4)2/Mπ .
At smaller times x0≤ x0i we compute the difference between the infinite- and finite-volume correlator
in scalar QED (i.e. NLO χPT) [22, 21]

G33(x0,∞)−G33(x0,L) =
1
3

(∫ d3~k
(2π)3 −

1
L3 ∑

~k

)
~k2 +M2

π

~k2
e−2x0

√
~k2+M2

π . (4.10)

This model omits the pion self-interaction and it is known to only account for a fraction of the finite-
volume correction to Π̄(Q2) at Q2 values of O

(
GeV2

)
[37]. However, comparing the correlator on

6
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two pairs of ensembles in Table 1 with the same parameters except for different physical volumes,
we observe that the finite-volume correction at times x0 ≤ x0i is smaller than our uncertainties.
Therefore, we are confident that this rather simple short-time description is sufficient at the current
level of precision, while recent developments [38] show a promising path towards improving on it.

We can estimate the relative size of the finite-volume corrections. For example, on ensembles
D200, N302 and J303, the ratio of the correction over the total ∆αhad at Q2 = 1GeV2 amounts to
more than 1%. The contribution, although small in absolute terms, is already bigger than the 0.5%
statistical uncertainty on these ensembles and therefore needs to be included.

4.4 Signal-to-noise ratio

Both the correlator and its variance can be expressed, using the spectral decomposition, as an
infinite tower of exponentials, but with different decay rates and amplitudes. In general, this leads to
an exponential deterioration of the signal with respect to the noise with Euclidean time, known as
the signal-to-noise ratio problem. As shown in Section 3, this problem has a larger impact on the
statistical error of Π̄(Q2) at smaller Q2. Although it affects all flavour components, it is more acute
for the light correlator, whose contribution remains sizeable longer in time.

As described in Ref. [21], one possibility is to model the tail of the correlator with a single
exponential, i.e.

G(x0) =

{
data, x0 < xcut

0 ,

Ae−mV x0 , x0 ≥ xcut
0 ,

(4.11)

where A and mV are obtained fitting the correlator. In our case, due to the high statistics available,
xcut

0 lies between 1.5 fm and 2.5 fm, depending on the ensemble. However, there is no guarantee that
a single state describes the tail of the correlator. This is particularly true for light ensembles in a
large volume, where both the ρ resonance and the tower of two-π states are long range contributions.
Therefore, this method has its limitations, and we choose not to use it. The results presented in
the following sections are obtained using the correlator data until the last time slice available. As
explained in Section 3, the contribution from the tail to Π̄(Q2) is smaller than in the case of aHLO

µ .
In the future, we are considering improving the statistical error on Π̄(Q2) at small Q2, especially

on light-pion ensembles, substituting the correlator at long times with a spectral reconstruction, and
controlling the systematics e.g. with the bounding method [39, 26]. In its simplest incarnation, this
relies on the fact that G(x0) at x0 ≥ xcut

0 is bounded by

0≤ G(xcut
0 )e−Eeff(xcut

0 )(x0−xcut
0 ) ≤ G(x0)≤ G(xcut

0 )e−E0(x0−xcut
0 ), (4.12)

where Eeff(x0) =−dlog(G(x0))/dx0 is the effective mass and E0 the ground state energy, to obtain
the xcut

0 so both bounds yield the same result for the observable.

5. Numerical results

Figure 2 shows the running of different contributions to Π̄(Q2), defined through the correlators
in Eq. (4.5), as a function of Q2 on three different lattices at the same lattice spacing with increas-
ingly lighter pions. As one moves away from the SU(3)-symmetric point, the Π̄33 contribution
increases while the Π̄88

conn contribution decreases. The (quenched) charm contribution is also shown
to be relatively independent on the pion mass and linearly increasing in the range of Q2 values. The

7
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Figure 2: Running with energy Q2 of different contributions to Π̄(Q2) on three different ensembles at
a≈ 0.064fm. The conserved, local discretization is shown and, when available, the local, local discretization
in a lighter colour shade. The negative side of the vertical axis of the plot is inflated by a factor 10 with
respect to the positive side.

negative disconnected contributions are also shown, enlarged by a factor 10. They are obtained
cutting the TMR integration at xcut

0 ≈ 2.5fm, which results in a conservative statistical error. Never-
theless, Table 2 shows that the statistical error on the disconnected contribution is comparable to the
connected one. The exception is the E250 ensemble, with only a small number of disconnected loop
measurements being available at the current time. We will improve the disconnected contribution
estimate by implementing the bounding method for the I = 0 channel, in order to reduce the statisti-
cal error and correctly estimate the integration tail systematics. It is worth noting that Π̄88

disc(Q
2) is

constant for Q2 & 0.5GeV2, as predicted by perturbation theory.

5.1 Extrapolation to the physical point

Four different lattice spacings and several quark masses, including the physical ones, allow us to

Table 2: Estimate of connected and disconnected contributions to 105 · Π̄(1GeV2) for the conserved-local
(c.l.) and, when available, local-local (l.l.) discretizations, on three different ensembles at a≈ 0.064fm.

×10−5 Π̄33 Π̄88
conn Π̄08

conn Π̄c
conn Π̄88

disc Π̄08
disc

N200 c.l. 3002(11) 2537(5) 393(6) 266.2(5) −39(7) −110(29)
l.l. 2962(11) 2497(5) 228.4(5) −39(7)

D200 c.l. 3226(13) 2526(5) 600(8) 270.3(6) −57(12) −120(36)
l.l. 3185(14) 2485(5) 232.5(5) −57(12)

E250 c.l. 3552(36) 2594(12) 826(21) 271.8(40) −164(50) −301(120)
l.l. 3511(36) 2553(12) 233.7(34) −171(51)
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Figure 3: Combined extrapolation of Π̄33(Q2) and Π̄88
conn(Q

2) at Q2 = 1GeV2 to the physical point. Filled
symbols denote the conserved, local discretization, while open symbols denote the local, local one.

extrapolate our results to the physical point. In these proceedings, we consider only the extrapolation
of the light and strange connected contributions, which is obtained with a combined fit of the two
discretizations of Π̄33(Q2) and Π̄88

conn(Q
2). At a given fixed Q2, each HVP function contribution in

the combined fit is modelled with

Π̄(a2/t0,φ2,φ4) = Π̄
sym +δ2a2/t0 +δ3(a2/t0)3/2 +β21a2(φ2−φ

sym
2 )/t0

+ γ1(φ2−φ
sym
2 )+ γ2(logφ2− logφ

sym
2 )+ γ4(φ2−φ

sym
2 )2 +η1(φ4−φ

sym
4 ), (5.1)

where φ2 = 8tsym
0 M2

π and φ4 = 8tsym
0 (M2

K +M2
π/2) are proxies for the Mπ and MK dependence. For

the continuum limit extrapolation, a2 and a3 terms are included with different coefficients for the
two different discretizations. To fit the dependence on the meson masses, we considered different
models. In the fit shown in Figure 3, the Π̄33(Q2) interpolation includes the γ33

1 term ∼M2
π and

the γ33
2 term ∼ logM2

π , while the Π̄88
conn(Q

2) interpolation includes an independent γ88
1 term and a

Table 3: Results extrapolated to the physical point for the different connected contributions to Π̄ for a range
of Q2 values. Only the connected contribution is included in ∆αhad and ∆had sin2

θW.

Q2 [GeV2] Π̄33 Π̄88
conn Π̄08

conn ∆αhad ∆had sin2
θW

0.1 0.00764(16) 0.00456(8) 0.00267(8) 0.000841(16) −0.000821(15)
0.4 0.02068(26) 0.01354(19) 0.00619(12) 0.002310(29) −0.002300(29)
1.0 0.03274(34) 0.02340(27) 0.00809(13) 0.003718(38) −0.003770(40)
2.0 0.04242(38) 0.03226(33) 0.00880(13) 0.004876(45) −0.005012(47)
3.0 0.04805(41) 0.03768(36) 0.00898(13) 0.005558(48) −0.005752(50)
4.0 0.05202(42) 0.04157(38) 0.00904(13) 0.006041(50) −0.006278(53)
5.0 0.05508(43) 0.04461(39) 0.00907(13) 0.006415(51) −0.006687(54)
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γ88
4 term ∼M4

π , while we constrain γ88
2 = γ33

2 /3. The latter term is included to match the diverging
behaviour of Π̄33(Q2) with Mπ → 0, that is present in Π̄88

conn(Q
2), with a factor of one third, due to

the missing disconnected contribution [26].
The combined fit includes the uncertainties in the determination of the pion and kaon masses,

including the correlation with the HVP function determination, that are obtained from a dedicated
computation. For every ensemble l, we build a residue vector

νl =



φ l
2

Π̄33
cl (a

2/tsym
0 ,φ l

2,φ
l
4)

Π̄33
ll (a

2/tsym
0 ,φ l

2,φ
l
4)

φ l
4

Π̄88
cl (a

2/tsym
0 ,φ l

2,φ
l
4)

Π̄88
ll (a

2/tsym
0 ,φ l

2,φ
l
4)


−



8tsym
0 M2

π

Π̄33
cl

Π̄33
ll

8tsym
0 (M2

K +M2
π/2)

Π̄88
cl

Π̄88
ll


data

(5.2)

and we minimize the χ2 = ∑l∈{ensembles} νT
l C−1

l νl , with the necessary adaptations for SU(3)-
symmetric ensembles where Π̄33 and Π̄88, and Mπ and MK , are not independent.

This choice leads to an acceptable fit with an additional cut on the physical lattice volume that
excludes lattices with L < 2.5fm. At Q2 = 1GeV2, we have χ2/dof = 52.13/38 = 1.37, which
corresponds to a p-values of 0.0631, and parameters

Π̄
sym = 0.02516(29), φ

sym
2 = 2φ

sym
4 /3 = 0.754(5), η1 =−0.011(4),

δ
cl
2 = 0.0126(31), δ

ll
2 = 0.0106(31), δ

cl
3 =−0.005(4), δ

ll
3 =−0.006(4), β21 = 0.0004(23),

γ
33
1 =−0.0017(9), γ

88
1 = 0.00363(33), γ

33
2 = γ

88
2 /3 =−0.00291(28), γ

88
4 = 0.0026(5).

(5.3)
The extrapolation to a = 0 and to physical π0 and K0 masses gives Π̄33 = 0.03274(34) and Π̄88

conn =

0.02340(27). Moreover, Π̄08
conn =

√
3(Π̄33−Π̄88

conn)/2 = 0.00809(13). Applying Eqs (1.2) and (2.1)
allows us to compute the leading hadronic connected contribution from three-flavour QCD to the
running of α and sin2

θW at Q2 = 1GeV2

∆αhad(−1GeV2) = 0.003718(38), ∆had sin2
θW(−1GeV2) =−0.003770(40). (5.4)

5.2 The running with energy

Performing the fit described in Section 5.1 for different values of Q2 results in a mild de-
pendence of the χ2 on Q2 up to around 2GeV2. At higher Q2 discretization effects become the
dominant systematics and the quality of the fit, using the current model, starts to deteriorate. Results
extrapolated to the physical point for a number of Q2 values are given in Table 3, and in Figure 4
we plot the HVP contribution to the running of α and sin2

θW. In both plots, we compare our
preliminary result to the corresponding contribution from the percent-level lattice determination of
Ref. [5], given in the supplemental material for five Q2 values. The agreement is good, with a small
tension only at the smallest Q2 = 1GeV2.

6. Conclusions and outlook

We computed on the lattice the leading hadronic contribution to the running of the electro-
magnetic coupling α and of the electroweak mixing angle θW. After extrapolating to the physical
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Figure 4: Leading hadronic (connected) contribution from three-flavour QCD to the running of the electro-
magnetic coupling α (left) and the electroweak mixing angle sin2

θW (right) as a function of the space-like
momentum transfer Q2. The blue line (with error band) is the extrapolation of our lattice data, while the
orange points are constructed from the HVP values from Table S3 of the supplemental material of Ref. [5].

point, the statistical error on the connected contribution amounts to ≈ 4×10−5 which, for both
quantities, is 1 % of the contribution at Q2 = 1GeV2. We also presented results for the disconnected
contribution, not yet extrapolated at the physical point, which show that the statistical error is also
around 1 % of the total contribution. We included finite-volume corrections, that are instrumental for
obtaining a reliable physical-point extrapolation. The precision of our results is comparable to the
phenomenological estimate, which is around 0.7 % and 1 % for the two quantities respectively [40].
In particular, flavour contributions are naturally singled out on the lattice. Thus, our results can be
combined with the phenomenological analysis of the electroweak mixing angle to reduce its flavour
separation systematics.

We are currently working on increasing the statistics of disconnected loops at physical meson
masses. Subsequently, we will extrapolate the disconnected and the quenched charm contribution to
the physical point. Moreover, a full assessment of systematic errors is missing from the results in
Table 3. We plan to assess the systematics introduced by the extrapolation by varying the choice of
the fit function, and, in the future, adding a new ensemble at the fine lattice spacing a≈ 0.050fm
with a lighter pion mass of Mπ ≈ 175MeV. We plan, as described in Section 4.4, to improve
the treatment of the long-time tail of the lighter ensembles with the bounding method. The scale
setting introduces an error that can be estimated as explained in Section B.2 of Ref. [21]. Also, a
small systematics from the mistuning of the charm hopping parameter needs to be added. Finally,
to compare with the physical world, isospin-breaking effects from non-degenerate u and d quark
masses and QED are to be included [41, 42].
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