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1. Introduction

Identifying gauge theories in the conformal window has been attracting a lot of attention, in

the context of composite Higgs model as well as purely theoretical interests. One of the simplest

candidates is SU(2) gauge theory with fundamental fermions. According to the Helsinki group

with their Wilson fermion simulations, the system is in the conformal window with n f = 6 and

n f = 8 flavors [1, 2]. We also studied the n f = 8 system with naive staggered fermion and surveyed

the bulk phase structure [3, 4]. In [4], we used chiral symplectic Random Matrix Theory (RMT

with the Dyson index βD = 4) to analyze the chiral condensate of the system. In order to obtain

the smallest eigenvalue distribution of the RMT, we used a finite matrix rank N = 400 and used

Hybrid Monte Carlo method. We observed that the chiral symmetry is broken in the strong coupling

side, while it is restored in the weak coupling side. The Polyakov loop analysis suggested that the

transition is weakly first order [3], but from the chiral condensate, the order was unclear.

Recently, one of the authors (I.K.) together with H. Fuji and S. M. Nishigaki has provided a

new numerical tool to estimate individual eigenvalue distribution for βD = 4 RMT [5]. In this talk,

we apply this new formula to SU(2) n f = 8 staggered system and analyze chiral symmetry breaking

pattern. Combining HMC estimation of the all the eigenvalue distribution of RMT with larger N

and the revised estimation of the chiral condensate, we further estimate the chiral susceptibility, as

from its volume dependence we can argue the nature of the bulk phase transition.

In the next section, we briefly review the relation of eigenvalue spectra between RMT and

QCD(-like) theory. Then we present the revised result of the chiral condensate. The RMT analysis

of the chiral susceptibility is given in Sec. 3. Section. 4 is the conclusion.

2. Chiral Condensate

We fit the value of chiral condensate with RMT by using the following relation:

ρQCD(m;λi) = ρRMT(µ =V Σparamm,ζi =V Σparamλi). (2.1)

In the simulation for the QCD-like gauge theory, we input the fermion mass, m, and the four-

volume and extract the i−th smallest eigenvalue of the Dirac operator. The distributions of these

small eigenvalues can also be determined. From the RMT, we have a mass parameter µ , i-th

smallest eigenvalue ζi and its distribution ρRMT. Equation (2.1) tells us that the distributions of the

eigenvalues are identical with a rescaling by V Σparam of the eigenvalues and the mass parameters.

Here, Σparam is the chiral condensate of the QCD side. Note that the above relation holds in the

broken phase of chiral symmetry and for λi smaller than (the correspondence of) the Thouless

energy. In such a situation, we can fit the value of Σparam. If the fit does not work to obtain Σparam, it

implies the QCD side is in the symmetric phase. Note that we can safely assume that the smallest

λi is smaller than the Thouless energy even the system is not in the ε-regime.

Our lattice setting is the following. The action is plaquette gauge action with unimproved

staggered fermions. The gauge group is SU(2) and the number of fermions is n f = 8 in the fun-

damental representation, for which no rooting trick is needed. That is, we use two staggered fla-

vors. Our fermion mass analyzed here are am = 0.003,0.005,0.010, and the lattice volume is in

L3 × T = 63 × 6 – 163 × 16. We use the periodic boundary condition in all directions for both

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
3
4

Chiral Condensate and Susceptibility of SU(2) n f = 8 Naive Staggered System Issaku Kanamori

gauge field and fermions. The distribution of the eigenvalues depends on the topological charge

ν so that we choose to work with ν = 0 for the RMT, and use gauge configurations in the same

topological sector in the fitting. The number of fermions for RMT, that is the degeneracy of the

eigenvalues, is rather non-trivial. As pointed out in [6], it is 2n f for n f flavor system due to the

double-fold degeneracy coming form the pseudo reality of SU(2) gauge group. In addition, we have

observed no eigenvalue degeneracy for the staggered taste for our parameters with naive staggered

fermion. As a result, we compare our QCD-like simulation with RMT for the number of flavors

nRMT
f = 2n f /4 = 4.

We fit the smallest eigenvalue from the lattice simulation by using the RMT eigenvalue dis-

tribution obtained in [5]1. We plot our fitted result of the chiral condensate in Fig. 1. In the plot,

light colored symbols are for fit with large chi squared per degrees of freedom (χ2/d.o.m > 1.5).

The errors are obtained by jackknife analysis. We observe finite chiral condensate at strong cou-

pling, i.e., small β = 4/g2. It disappears at around β = 1.4–1.5. As reported in [3], there is a bulk

transition at the same β value, where no four-volume dependence of the transition point appears

in the plaquette variables. We associate the transition between broken and symmetric phase of the

chiral symmetry to the same bulk transition. In order to access to the conformal window, we must

perform the simulation in the symmetric phase, i.e., in the weak coupling side. Although our pre-

vious result in [4] is based on a subset of data used in this analysis, it is essentially the same as the

revised result.

3. Chiral Susceptibility

By noting that ZQCD(m;λi) = ZRMT(µ =V Σparamm;ζi =V Σparamλi) in the ε-regime, we have

an expression of chiral susceptibility χ :

χ =−
1

n f

1

V

∂ 2

∂ 2m
lnZQCD =−

1

n f

V Σparam
∂ 2

∂ µ2
lnZRMT (3.1)

=V Σ2
param

{

〈A(µ)〉RMT +n f

(

〈B(µ)B(µ)〉RMT − (〈B(µ)〉RMT)
2
)}

(3.2)

=
Σparam

m
µ
{

〈A(µ)〉RMT +n f

(

〈B(µ)B(µ)〉RMT − (〈B(µ)〉RMT)
2
)}

, (3.3)

where A(µ) = ∑i

[

2
ζ 2

i +µ2 −
4µ2

(ζ 2
i +µ2)

2

]

and B(µ) = ∑i
2µ

ζ 2
i +µ2 . The expectation value 〈•〉RMT is that

in the RMT. The same formula was used for the Dyson index βD = 2 system [7]. Since we have

the fitted result of the chiral condensate Σparam and thus the value of µ , we can calculate the chiral

susceptibility χ . Although the parameter Σparam gives the chiral condensate at the infinite volume,

the partition function ZQCD is the one at finite volume V . That is, the susceptibility χ obtained by

eq. (3.3) has a volume dependence.

It is important to note that this formula is based on the equivalence of the whole partition

function. That is, we must use the lattice data in the ε-regime so that the value of µ must be

1In [5], it is shown that our previous estimate with N = 400 [4] has a sizable finite N effects to the estimation of the

smallest eigenvalue distribution. Compared with the error coming from lattice data in [4], however, it is the same order

or smaller so that the systematic error coming from finite N was under control.
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Figure 1: Chiral condensates Σ = Σparam in the lattice unit obtained by using RMT (left column) and the

zoom-ups (right column). The fermion mass is am = 0.003, 0.005 and 0.010, respectively, from the top

panels to the bottom.

order 1 or smaller. This is different from fitting the chiral condensate, for which we need only the

information of the smallest eigenvalue, and gives a restriction on using eq. (3.3). For the βD = 2

quenched system, it was shown in [7] that the formula leads to a good agreement with the result

obtained by lattice simulation at µ is O(1) or smaller. Since we need all the eigenvalues of the

RMT, and it is not practically feasible to employ the new method in [5] to achieve this, we resort to

a numerical approach by formulating the problem as a one-dimensional field theory and simulating

the theory using the Hybrid Monte Carlo (HMC) algorithm with the matrix rank N = 2000. The

details of the HMC on this system is found in [5].

Figure 2 shows the rescaled chiral susceptibility mχ/Σparam against µ = mΣparamV . For a fixed
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value of fermion mass m and the chiral condensate Σparam, which are equivalent to a fixed value

of β (see Fig. 1), µ is proportional to the volume. Therefor the linear raising of mχ/Σparam near

the origin in Fig. 2 implies a linear growth of the susceptibility in volume. In this small µ region,

however, no peak structure appears and thus it is not clear whether this linear behavior is also true

for the peak of the susceptibility or not.

In Fig. 3, we plot the susceptibility obtained by using eq. (3.3). Although we only have limited

data points at µ < 2, it is clear that there is no peak which grows as the volume becomes larger.

That is, there is no indication of the first order transition.

We need some care to interpret this result. As the volume becomes larger with fixed fermion

mass, the system moves away from the ε-regime so that we need to use small enough fermion

mass to stay in the ε-regime. From the smallest mass plot (am = 0.003, top panel in Fig. 3), the

larger (83 × 8) volume gives the larger susceptibility. This volume dependence might imply the

first order transition, but since no peak structure is observed, our data cannot be used to draw this

conclusion. This is different from SU(3) case, where first order bulk phase transitions related to the

S4 symmetry for staggered fermion exist [8].

If the transition is not first order, it can be either a crossover or a second order phase transition.

The latter case implies possible existence of a non-trivial continuum limit in the ε-regime. Since we

can discuss only the broken side of the phase transition with our analysis, independent estimations

of the chiral susceptibility with different method such as direct lattice calculation are required to

give a conclusive result.
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Figure 2: The rescaled chiral susceptibility mχ/Σ = mχ/Σparam obtained by using eq. (3.3).

4. Conclusions

We revised the chiral condensate of n f = 8 naive staggered system in SU(2) fundamental

representation by fitting the smallest Dirac eigenvalue with symplectic chiral RMT. We used a

new numerical estimation of the distribution of individual eigenvalues of the RMT. As previously

reported, at strong coupling, we observe a bulk phase in which chiral symmetry is broken. The

weak coupling side is the symmetric phase so that it is consistent with the scenario that the theory

is in the conformal window. By further using RMT, we also have estimated chiral susceptibility.
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Figure 3: Chiral susceptibility. Light color symbols correspond to µ ≥ 2 data, for which eq. (3.3) may not

apply.

Although data in the ε-regime, in which our estimation is justified, is limited, we have not observed

any peak which grows with the volume in the susceptibility. This implies that the bulk transition is

not of first order.

Acknowledgments

We thank C. Y. H. Huang and K. Ogawa for their contributions in generating configurations.

I.K. is supported by part by MEXT as “Priority Issue 9 to be Tackled by Using Post-K Computer”

(Elucidation of the Fundamental Laws and Evolution of the Universe) and JICFuS. C.J.D.L ac-

knowledges research grant 105-2628-M009-003-MY4 from Taiwanese MoST.

References

[1] V. Leino, J. Rantaharju, T. Rantalaiho, K. Rummukainen, J. M. Suorsa and K. Tuominen, The gradient

flow running coupling in SU(2) gauge theory with N f = 8 fundamental flavors, Phys. Rev. D95 (2017)

114516 [1701.04666].

[2] V. Leino, K. Rummukainen, J. M. Suorsa, K. Tuominen and S. Tähtinen, Infrared fixed point of SU(2)

gauge theory with six flavors, Phys. Rev. D97 (2018) 114501 [1707.04722].

[3] C. Y. H. Huang, C. J. D. Lin, K. Ogawa, H. Ohki and E. Rinaldi, Phase Structure Study of SU(2)

Lattice Gauge Theory with 8 Flavors, PoS LATTICE2014 (2014) 240 [1410.8698].

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
0
3
4

Chiral Condensate and Susceptibility of SU(2) n f = 8 Naive Staggered System Issaku Kanamori

[4] C. Y. H. Huang, I. Kanamori, C. J. D. Lin, K. Ogawa, H. Ohki, A. Ramos et al., Lattice study for

conformal windows of SU(2) and SU(3) gauge theories with fundamental fermions, PoS

LATTICE2015 (2016) 224 [1511.01968].

[5] H. Fuji, I. Kanamori and S. M. Nishigaki, Janossy densities for chiral random matrix ensembles and

their applications to two-color QCD, JHEP 08 (2019) 053 [1903.07176].

[6] M. E. Berbenni-Bitsch, S. Meyer and T. Wettig, Microscopic universality with dynamical fermions,

Phys. Rev. D58 (1998) 071502 [hep-lat/9804030].

[7] M. E. Berbenni-Bitsch, M. Gockeler, H. Hehl, S. Meyer, P. E. L. Rakow, A. Schafer et al., Random

matrix theory, chiral perturbation theory, and lattice data, Phys. Lett. B466 (1999) 293

[hep-lat/9907014].

[8] A. Cheng, A. Hasenfratz and D. Schaich, Novel phase in SU(3) lattice gauge theory with 12 light

fermions, Phys. Rev. D85 (2012) 094509 [1111.2317].

6


