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Topological insulators in odd dimensions are characterized by topological numbers. We prove the
well-known relation between the topological number given by the Chern character of the Berry
curvature and the Chern-Simons level of the low energy effective action for a general class of
Hamiltonians bilinear in the fermion with general U(1) gauge interactions including non-minimal
couplings by an explicit calculation. A series of Ward-Takahashi identities are crucial to relate the
Chern-Simons level to a winding number, which could then be directly reduced to Chern character
of Berry curvature by carrying out the integral over the temporal momenta.
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1. Introduction

Topological insulators in D = 2n+1 dimensions are characterized either by the Chern charac-
ter of the Berry connection from the eigenfunctions of the Hamiltonian in the valence band [1, 2]
or by the coefficient of the effective action as a functino of an external U(1) gauge field, i.e., pho-
ton [3, 4, 5, 6]. These two characterization are known to be equivalent because they both arise from
the current correlation functions and there are explicit proofs for various cases [7, 8]. In Ref. [9] a
proof is given for a large class of models for general odd dimensions, where they consider the most
general lattice action for arbitrary free kinetic term on the lattice which is then coupled to U(1)
gauge field in a minimal way, i.e. with the gauge interaction in the form of

H(A) = ∑
m,n

ψ†
mhmneiAmnψn +∑

m
ψ†

mψm, (1.1)

where m,n are the lattice sites hmn are the hopping parameters and Amn is the line integral of the
gauge field along the straight line connecting the sites m and n. The advantage of this class of
Hamiltonian is that the contact interactions such as fermion-fermion-multi-photon vertices do not
contribute to the final expression so that only a set of Feynman diagram which appear also in the
continuum theory gives non-vanishing contributions. Of course, this type of gauge interaction is
physically motivated since it is based on the famous method of ‘Peierls substitution’ [10]. How-
ever, in more general situation, the gauge interaction may not always be described by such a single
straight Wilson-line. In such cases, one has to include the contribution of contact interaction ver-
tices. In this proceedings, we report our recent study on the equivalence for generalized lattice
Hamiltonian so as to include arbitrary non-minimal gauge interactions [11].

2. Gapped fermion system on the lattice

We consider a gapped fermion system (with a gap ∆) on a lattice with the following action in
Euclidean space in D = 2n+1 dimensions.

SE =
∫

dt ∑⃗
r

ψ†(t ,⃗r)
[

∂
∂ t

+ iA0 +H(A⃗)
]

ψ(t ,⃗r), (2.1)

where r⃗ runs over the 2n dimensional spatial lattice points. We will set x0 = t in the followings.
The Hamiltonian H(A⃗) is given by a summation over all the possible hoppings on the lattice which
include gauge interactions with a smooth external U(1) gauge field Aµ = (A0, A⃗). The fermion
fields ψ†(t ,⃗r) and ψ(t ,⃗r) give creation and annihilation operators of fermions after quantization.
We assume that there are Nv bands and Nc bands below and above the fermi level, respectively.
Therefore the fermion fields have Nv +Nc components.

Since the fermion system is gapped with a gap size ∆ > 0 , the effective gauge action obtained
by integrating out fermions can be expanded in terms of gauge invariant local actions as Seff =

∑k akSk(A). Here, Seff(A) is defined as eSeff =
∫

DψDψ†e−SE , and Sk(A) are the gauge invariant
actions given by the local Lagrangian Lk(A) and ak are the coefficients. By dimensional analysis, if
the Lagragian Lk(A) has a mass dimension dk the coefficient ak is suppressed by the dk − (2n+1)-
powers in 1

∆ or lattice spacing a. Many of the Lagrangians are given in terms of gauge invariant field
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Fµν Since we do not have the Lorentz-invariance on the lattice, the structure of the coefficients ak

in the effective action heavily depend the geometry of the lattice. However, there is a very special
parity-violating term called Chern-Simons action Scs(A) given by

Scs(A) =
∫

d2n+1x εα0β1α1···βnαnAα0∂β1Aα1 · · ·∂βnAαn . (2.2)

This action is topological and always takes this form no matter what the geometry of the lattice
is. Topological information of the fermion system is contained in the effective action through the
coefficient ccs as Seff(A) = iccsScs + · · · where "· · · " stands for other gauge invariant terms . Here
the gauge invariance of the action requires that the coefficient is quantized as

ccs =
k

(2π)n(n+1)!
, k ∈ Z. (2.3)

Since the Chern-Simons action is of the lowest dimension in the parity-violating sector, the coeffi-
cient ccs can be obtained by the following quantity

ccs =
(−i)n+1εα0β1α1···βnαn

(n+1)!(2n+1)!

(
∂

∂ (q1)β1

)
· · ·
(

∂
∂ (qn)βn

) n

∏
i=1

∫
dDxieiqαi xi

δ n+1Seff(A)
δAα0(x0)δAα1(x1) · · ·δAαn(xn)

∣∣∣∣∣
qi=0

.(2.4)

The effective action can be given by the log of the fermion determinant as Seff(A)=Tr [ln(D0 +H(A))],
where D0 =

∂
∂x0 + iA0. Splitting the kinetic operator D0 +H(A) into free part and interaction part

as D0 +H(A) = ∂
∂x0

+H0 −Γ(A), where H0 is the free fermion part defined as H0 ≡ H(A)|A=0 and
Γ(A) is the interaction part defined as Γ(A)≡−iA0 −H(A)+H0. Expanding in Γ(A), we obtain

Seff(A)− const. = −
∞

∑
n=1

1
n

Tr

[(
1

∂
∂x0

+H0
Γ(A)

)n]
(2.5)

From Eq.(2.4), we find that the Chern-Simons coupling for D = 2+1 dimension is given by

ccs = −(−i)2

2!3!

∫ d3 p
(2π)3 εα0β1α1

(
∂

∂q1

)
β1{

Tr
[
SF(p)Γ(2)[−q1,α0;q1,α1; p]

]
+ Tr

[
SF(p−q1)Γ(1)[−q1,α0; p]SF(p)Γ(1)[q1,α1; p−q1]

]}∣∣∣
q1=0

,(2.6)

where SF(p) is the fermion propagator 1
ip0+H0(p⃗) and Γ(1)[q1,α1; p] and Γ(2)[q1,α1;q2,α2; p] are

fermion-fermion-photon and fermion-fermion-photon-photon vertices with in-coming fermion mo-
mentum p and in-coming photon momenta qi (i = 1,2) with Lorentz index αi (i = 1,2)

Γ(1)[q1,α1; p] =
∫

d2n+1x1 eiq1·x1

∫
d2n+1y eip·y δΓ[A](x,y)

δAα1(x1)

∣∣∣∣
A=0

, (2.7)

Γ(2)[q1,α1,q2;α2; p] =
2

∏
i=1

(∫
d2n+1xi eiqi·xi

)∫
d2n+1y eip·y δ 2Γ[A](x,y)

δAα1(x1)δAα2(x2)

∣∣∣∣
A=0

, (2.8)

Note that the contributions with multi-photon vertices vanishes for the class of Hamiltonians with
gauge interactions given by a single straight Wilson-line because the multi-photon vertices are
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symmetric under the interchange of Lorentz indices of photons. When contracted with the anti-
symmetric tensor, such contributions vanish. However, in general Hamiltonian we must consider
these contributions.

In addition to the usual Ward-Takahashi identity Γ(1)[0,α; p] =− ∂S−1
F (p)

∂ pα
, we derive the Ward-

Takahashi identities in Appendix A as

∂ 2Γ(1)[k,µ; p]
∂kν∂ pλ

∣∣∣∣∣
k=0

=
∂Γ(2)[k,µ;0,λ ; p]

∂kν

∣∣∣∣∣
k=0

=
∂Γ(2)[0,λ ; l,µ; p]

∂ lν

∣∣∣∣∣
l=0

. (2.9)

Using these identities, the integrand of Eq. (2.6) can be rewritten as

εα0β1α1Tr

[
∂

∂pα0

(
2SF(p)

∂Γ(1)[q,α1; p]
∂qβ1

)
+SF(p)

∂S−1
F (p)

∂ pα1

SF(p)
∂S−1

F (p)
∂ pβ1

SF(p)
∂S−1

F (p)
∂ pα0

]∣∣∣∣∣
q=0

.(2.10)

The first term is a total divergence which vanishes when we integrate over the momentum. There-
fore, one finds that the Chern-Simons coupling is given by the winding number as

ccs =
(−i)2εα0β1α1

2!3!

∫ d p0

2π

∫
BZ

d2 p
(2π)2 Tr

[
SF(p)

∂S−1
F (p)

∂ pα0

SF(p)
∂S−1

F (p)
∂ pβ1

SF(p)
∂S−1

F (p)
∂ pα1

]
.(2.11)

For the case for D = 4+1 dimension (n = 2), we also have the following Ward-Takahashi identitiy
given in AppendixA

∂ 2Γ(3)[q,µ;r,ν ;0,λ ; p]
∂qα∂ rβ

∣∣∣∣∣
q=r=0

=
∂ 3Γ(2)[q,µ;r,ν ; p]

∂qα∂ rβ ∂ pλ

∣∣∣∣∣
q=r=0

. (2.12)

with which one can show extra terms add up to total derivatives so we obtain

ccs = −(−i)3 ·2
3!5!

∫ d5 p
(2π)5 εα0β1α1β2α2

Tr
[

SF(p)
∂S−1

F (p)
∂ pα0

SF(p)
∂S−1

F (p)
∂ pβ1

SF(p)
∂S−1

F (p)
∂ pα1

SF(p)
∂S−1

F (p)
∂ pβ2

SF(p)
∂S−1

F (p)
∂ pα2

]
.(2.13)

Therefore, Chern-Simons coupling is given by the winding number with fermion propagator also
for D = 4+1 case.

3. Equivalence of winding number and chern number

We now show the equivalence of the Chern-Simons coupling given by the winding number
expression and the Chern character given by the Berry connection for the energy eigenstates in the
valence bands. The proof of this part is already given in Ref. [9], but since the proof is simple, we
give it here for completeness. We give the calculation for arbitrary odd (D = 2n+1) dimensions,
even though we have shown that the Chern-Simons coupling ccs can be written by the winding
number using SF only for D = 2+1 and D = 4+1 dimensions.

In order to simplify the notation, hereafter we abbreviate the derivative with respect to the
momentum pµ as ∂µ ≡ ∂

∂ pµ
. The result of the previous section for D = 2+ 1 and D = 4+ 1 can
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be unified to the following results: In the expression using the fermion propagator S(p) = 1
ip0+H

and inserting a complete set of energy eigenstates ∑
α
|α⟩⟨α|, where α is the label of energ, the

Chern-Simons coupling ccs is given as

ccs =
n!(−i)n+2

(n+1)!(2n)!

∫ d2n p
(2π)2n ∑

α1,··· ,α2n

ε i1i2···i2n

∫ d p0

2π
⟨α1|∂i1H|α2⟩⟨α2|∂i2H|α3⟩ · · · ⟨α2n|∂i2nH|α1⟩

(ip0 +Eα1)
2(ip0 +Eα2) · · ·(ip0 +Eα2n)

, .

(3.1)

where i1, · · · , i2n stand for the spatial indices.
All we have to do is to integrate over p0 using Cauchy’s theorem. Here, we use a trick to

simplify the integration. It is easy to see that the expression Eqs. (2.10), (2.13) are invariant under
continuous deformation of SF (or H) provided that the integrand remains to have no singularities.
Therefore, under a continuous change of the Hamilitonian, the winding number remains unchanged
from its original value as long as the enegry spectrum is kept gapped throughout the deformation.
Now, the most general Hamiltonian with Nv valence bands and Nc conduction bands is expressed
as

H(p⃗)≡
Nv

∑
a=1

Ea(p⃗)|a(p⃗)⟩⟨a(p⃗)|+
Nc

∑̇
b=1

Eḃ(p⃗)|ḃ(p⃗)⟩⟨ḃ(p⃗)|, (3.2)

where |a(p⃗)⟩ labeled by a is the energy eigenstate in the valence band with spatial momentum p⃗
and negative energy eigenvalue Ea(p⃗) < 0. The state |ḃ(p⃗)⟩ labeled by ḃ is the energy eigenstate
in the conduction band with spatial momentum p⃗ and positive energy eigenvalue Eḃ(p⃗) > 0. One
can continuously deform the Hamiltonian without hitting the singularity of S(p) ( i.e. keeping the
system gapped ) so that all energy eigenvalues in the conduction bands and all energy eigenvalues
in the valence bands are degenerate and momentum independent (i.e. flat band ) respectively. Then
the deformed Hamiltonian Hnew which gives the same winding number becomes

Hnew(p⃗) = Ev

Nv

∑
a=1

|a(p⃗)⟩⟨a(p⃗)|+Ec

Nc

∑̇
b=1

|ḃ(p⃗)⟩⟨ḃ(p⃗)|, (3.3)

where Ev < 0, Ec > 0 are the momentum independent constant. Here the eigenstates are identical
to those with the original Hamiltonian. Since there are only two poles, we can easily carrry our p0

integral to obtain

J =−
Nv

∑
a1,··· ,an=1

Nc

∑
ȧ1,··· ,ȧn=1

ε i1 j1···i2n j2n
(2n)!
(n!)2 ⟨a1|∂i1 ȧ1⟩⟨ȧ1|∂ j1a2⟩× · · ·×⟨an|∂in ȧn⟩⟨ȧn|∂ jna1⟩.

Let us define the Berry connection using the negative energy eigenstates as

A ab ≡ A ab
µ dxµ =−i⟨a|∂µb⟩dxµ ≡−i⟨a|db⟩. (3.4)

Then it is straightforward to show that the Berry curvature F ab is

F ab ≡ (dA + iA A )ab = i
Nc

∑̇
c=1

⟨a|dċ⟩⟨ċ|db⟩ (3.5)
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Using Eq. (3.5), the Chern-Simons coupling can be expressed as

ccs =
(−1)n

(n+1)!(2π)n

∫
BZ

chn(A ), (3.6)

where chn(A ) is the 2nd Chern character defined by chn(A ) = 1
n!

1
(2π)n tr(F n) . Comparing this

expression with Eq. (2.3) ccs =
k

(n+1)!(2π)n ,

k = (−1)n
∫

BZ
chn(A ). (3.7)

We have shown the Chern-Simons level and the topological number in terms of the Berry connec-
tion is identical. On the other hand, while the Berry connection approach is limited to the free
theory case, the effective theory approach can be applied also to interacting theories.
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A. Ward-Takahashi identities

In this appendix, we derive various identities among vertex functions and the inverse fermion
propagator obtained from gauge invariance, i.e. Ward-Takahashi identities. Finite difference op-
erator which appears in the hopping term of the lattice fermion system can be expressed in terms
of infinite series of derivatives. Therefore, we assume that the Hamiltonian can be expressed in
terms of all sorts of fermion hopping terms connected by the Wilson-lines of arbitrary contours or
superpositions of them. Then, the action can be formally expanded as

S =
∫

dt ∑⃗
x

∞

∑
n=0

ψ†(t, x⃗)Mµ1···µn(Dµ1 · · ·Dµnψ)(t, x⃗) (A.1)

where summation over µ1, · · · ,µn are implicit. Mµ1···µn are some N ×N matrix where N = Nc +Nv

is the number of fermion degrees of freedom per site.
Expanding this action in terms of gauge fields and making Fourier transformations, one can

obtain the formal expressions of the inverse propagator and the vertex functions in the momentum
space. In the following, let us denote the inverse fermion propagator with momentum p as S−1

F (p)
and the vertex functions with incoming fermion momentum p and n photons with incoming mo-

mentum ki and µi components (i = 1, · · · ,n) and outgoing fermion with momentum p+
n

∑
i=1

ki as

Γ(n)[k1,µ1; · · · ;kn,µn; p]. Then the formal expression gives

S−1
F (p) =

∞

∑
n=0

Mµ1···µn

n

∏
i=1

(
ipµi

)
, (A.2)

Γ(1)[k,µ; p] =−i
∞

∑
n=1

n

∑
a=1

Mµ1···µa−1µµa+1···µn

a−1

∏
i=1

(
i(p+ k)µi

) n

∏
i=a+1

(
ipµi

)
, (A.3)
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Substituting Eqs. (A.2) (A.3), it is easy to show the usual Ward-Takahashi identity in QED holds.
Now, t is interesting to note that we could also obtain Ward-Takahashi identities for quantities

involving higher order terms in photon momenta and multi-photon vertex functions. For example
the two-photon vertex is given as

Γ(2)[k,µ; l,ν ; p]

= −i2
∞

∑
n=1

n

∑
a,b=1

a<b

Mµ1···µa−1µµa+1···µb−1νµb+1···µn

a−1

∏
i=1

(
i(p+ k+ l)µi

) b−1

∏
i=a+1

(
i(p+ l)µi

) n

∏
i=b+1

(
ipµi

)

− i2
∞

∑
n=1

n

∑
a,b=1

a<b

Mµ1···µa−1νµa+1···µb−1µµb+1···µn

a−1

∏
i=1

(
i(p+ k+ l)µi

) b−1

∏
i=a+1

(
i(p+ k)µi

) n

∏
i=b+1

(
ipµi

)
,

(A.4)

Using Eqs.(A.3) (A.4) , we obtain the following identities:

∂ 2Γ(1)[k,µ; p]
∂kν∂ pλ

∣∣∣∣∣
k=0

=
∂Γ(2)[k,µ; l,λ ; p]

∂kν

∣∣∣∣∣
k,l=0

=
∂Γ(2)[k,λ ; l,µ; p]

∂ lν

∣∣∣∣∣
k,l=0

(A.5)

Carrying out similar calculations by simply differentiaing Γ(2) and Γ(3) , we can see that the fol-
lowing identity holds:

∂ 2Γ(3)[q,µ;r,ν ;s,λ ; p]
∂qα∂ rβ

∣∣∣∣∣
q,r,s=0

=
∂ 3Γ(2)[q,µ;r,ν ; p]

∂qα∂ rβ ∂ pλ

∣∣∣∣∣
q,r=0

(A.6)
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