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1. Introduction

The nature of the finite temperature phase transition of 2+1 flavor QCD at zero chemical
potential depends on quark masses. The order of transition and universality class are summarized
in the plane of light quark mass, ml and strange quark mass, ms, which is called the Columbia
plot [1].

A first order phase transition is expected in the small quark mass region [2]. Many lattice QCD
studies have shown that the phase transition is also of first order in the heavy quark mass region
while it is crossover in the medium quark mass region. The boundary between the first order and
crossover regions is a second order phase transition of Z2 universality class.

The nature in the lower-left corner of the Columbia plot has not been fully understood yet.
The first lattice QCD calculation was done by using standard Wilson fermions at NT = 4 roughly
20 years ago. It reported the critical mass at the critical endpoint (CEP), mE, for NF = 3 is heavy:
the critical quark mass mq,E = ml,E = ms,E ≳ 140 MeV or, equivalently, the critical pseudo scalar
mass mPS,E = mπ,E = mηs,E ≳ 1 GeV [3]. After a preliminary study with standard Wilson gauge
and staggered fermions which reported the bare critical mass amq,E ∼ 0.035 [4] at NT = 4, Karsch et
al. reported preliminary values for the critical mass, mPS,E ∼ 290 MeV with unimproved gauge and
staggered fermion actions and mPS,E ∼ 190 MeV with improved gauge and p4 staggered fermion
actions [5]. These results were obtained by using the R-algorithm [6]. Afterward, the results
were updated as mPS,E = 290(20) MeV with unimproved gauge and staggered fermion actions
and mPS,E = 67(17) MeV with improved gauge and p4 staggered fermion actions [7]. Then, in
ref. [8], de Forcrand and Philipsen obtained amq,E = 0.0260(5) by using the RHMC algorithm [9,
10], which is about 25% smaller than the value amq,E ≈ 0.033 quoted by works using the R-
algorithm. They also performed NF = 2+1 simulations and obtained the critical line and tri-critical
point, amtri

s ≈ 0.7, where lattice spacing a was approximately 0.3 fm. In ref. [11] with unimproved
staggered fermions, it was reported that the ratio of mPS,E and the CEP temperature TE decreased
from 1.680(4) to 0.954(12) as increasing NT from 4 to 6. These results are showing very large cut
off effect for the critical mass and it is important to increase NT and use improved actions. Further
studies with improved staggered fermions have not found the first order phase transition and quoted
only a bound of the critical mass, mPS,E ≲ 50 MeV, [12, 13, 14]. Therefure, the positions of the
critical endline (CEL), mtri

s and CEP for NF = 3 are still particularly important problems to be
solved at this moment.

Recently we also have investigated the nature of the finite phase transition in the small quark
mass region by using non-perturbatively O(a)-improved Wilson-clover fermions. We have deter-
mined CEP at NT = 4,6,8, and 10 as well as an upper bound of CEP in the continuum limit for
NF = 3 [15, 16]. For NF = 2+1, we have studied at NT = 6 and determined CEL around the SU(3)
flavor symmetric point. Then, we confirmed that the slope of CEL at the SU(3) flavor symmetric
point is -2 [17]. In this paper, we extend our study for both CEP at the SU(3) flavor symmetric
point and CEL away from the SU(3) flavor symmetric point.

2. Simulations

We employ the renormalization-group improved Iwasaki gauge action [18] and non-perturbatively
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O(a)-improved Wilson-clover fermion action [19]. CEP is determined by using the intersection
point of kurtosis of chiral condensate. This method is expounded in Ref [15] and used in our re-
cent studies [15, 16, 17]. Expectation value, susceptibility and skewness of chiral condensate are
also used for confirming phase transition and determination of the transition point. Chiral conden-
sate and its higher moments are computed from traces of the inverse Wilson clover Dirac operator
up to a power of −4, i.e. TrD−1,−2.−3,−4, by using 10 noise vectors. We have checked that 10
noises are good enough in this study. We employ the multi-parameter, multi-ensemble reweighting
method [20] to determine CEP with very small statistical error. We reweight both κl and κs so that
we can determine many CEPs without doing simulations at many parameter sets. We performed
zero temperature runs for physical scale setting which are covering almost all transition points
of finite temperature simulations. Lattice spacings are computed by the Wilson flow lattice scale√

t0/a [21]. Our finite temperature simulations are performed at the temporal size NT = 6 and with
a lattice spacing a ≈0.19 fm for CEL, and NT = 12 and a ≈ 0.12 fm for the continuum limit of
CEP at the SU(3) flavor symmetic point. The spatial size NS is 10,12,16, and 24 at NT = 6 and
NS = 16,20,24,28, and 32 at NT = 12. We have confirmed mPSL > 4 at almost all transition points,
where mPS is the pseudo scalar mass and L is the physical spatial extent. We will explain complete
simulation details in our upcoming full paper.

3. Simulation results

3.1 Simulation results for NF = 3

We show expectation value, susceptibility, skewness and kurtosis of chiral condensate at β =

1.80 as example in Fig. 1. It shows that the reweighting method works well and we can find the
phase transition precisely. Fig. 2 shows a kurtosis intersection plot and a plot for the ratio of the
critical exponents, b = γ/ν determined by finite size scaling of the peak height of susceptibility,
χmax = Nb

S . To locate the intersection point of kurtosis we use a following modified fitting form
including a correction term from energy-like observable that we have used in our previous study:

K =
[
KE +AN1/ν

S (β −βE)
]
(1+BNyt−yh

S ) , (3.1)

wherer K, KE, βE, yt, and yh are kurtosis, kurtosis at the endpoint, β at the endpoint, the exponent
for the temperature and the magnetic field, respectively. We examine three fits as follows. Fit-
1 has no correction term (B = 0) and all other parameters are used as fit parameters. Fit-2 also
neglects the correction term assuming the 3D Z2 universality class for KE and ν . Fit-3 includes
the correction term assuming the 3D Z2 universality class for KE, ν , and yt − yh. In the 3D Z2

universality class, KE = −1.396, ν = 0.63, and yt − yh = −0.894. The fit results are summarized
in Table 1. Fit-1 gives substantially larger KE than the 3D Z2 value with large error. ν is consistent
with the universal value 0.63 but it has fairly large error. So we can not confirm transition belongs
to the 3D Z2 universality class from Fit-1. We observe χ2/d.o.f. of Fit-2, assuming the 3D Z2

universality class without correction term, is not bad and reasonable χ2/d.o.f. < 1 for Fit-3.
For a cross check of the endpoint location, a b plot (right panel of fig. 2) is helpful because b

changes from dimension number (3 in this study) to 0 via a certain value at the critical endpoint
when the transition changes from the first order phase transtion to crossover. The value of a green
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horizontal line is b of the 3D Z2 universality class. We see b as a fuction of β is crossing the
green line at βE determined by the kurtosis intersection. This cross check tells our analysis works
well. We adopt βE determined by Fit-3 in the following analysis. Since b of other universality
classes is a similar value as b of the 3D Z2 universality class, this plot is not suited to distinguish
the universality class.

In Fig. 3, mPS,E and TE normalized by
√

t0 as a function of 1/N2
T are shown. Linear continuum

extrapolations give
√

t0mPS = 0.1262(57) with χ2/d.o.f. = 0.84 and
√

t0T = 0.09968(36) with
χ2/d.o.f.= 0.34
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Figure 1: Expectation value , susceptibility, skewness and kurtosis of chiral condensate as a function of κ
at β = 1.80.
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Figure 2: Kurtosis intersection (left) and the ratio of the critical exponents, b = γ/ν (right) as a function of
β for NF = 3 including smaller NT results.

Table 1: Kurtosis intersection fitting reuslts for NF = 3.
Fit βE KE ν A B yt − yh χ2/d.o.f.

1 1.8145(42) −0.64(21) 0.66(56) 0.4(1.5) 0 0 0.34
2 1.7954(66) −1.396 0.63 0.211(69) 0 0 1.34
3 1.8098(26) −1.396 0.63 0.419(89) −7.0(1.5) −0.894 0.29

3.2 Simulation results for NF = 2+1

In Fig. 4, we plot CEP in two different bare parameter planes: (1/κl, 1/κs)-plane and (β ,
1/κs)-plane. Fig. 5 shows CEP at NT = 6 together with preliminary results for CEL at NT = 6,8,
and 10 as well as its continuum extrapolation in a dimensionless physical scale plane. This plane
corresponds a light quark and strange quark mass plane. We see that CEL blows up rapidly as
decreasing the light quark mass. We will explain how to estimate CEL at NT > 6 later.
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Figure 3: Continuum extrapolations for
√

t0mPS,E (left) and
√

t0TE (right).
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Figure 4: CEP in bare parameter planes.

To estimate CEL, we first fit CEP at NT = 6 to a formula inspired by the tri-critical scaling
law [22]

y = b0 +b1x2/5 , (3.2)

where x = (
√

t0mπ,E)
2, y = (

√
t0mηs,E)

2, b0 and b1 are free parameters. Resulting b0 is proportional
to the strange quark mass at the tri-critical point. We obtain b0 = 6.71(8) and b1 =−13.3(2) with
χ2/d.o.f. = 0.54 by using only data in range x < 0.105, i.e. m2

ηs,E/m2
π,E > 10. By changing the

fitting range in this fitting, we can discuss the tri-critical scaling region. Since the fitting which
includes data up to x ≈ 0.125 gives reasonable χ2/d.o.f., that is less than one, we update the
tentative scaling region at NT = 6, i.e. m2

ηs,E/m2
π,E > 7.5.

In the all range fitting we use the formula adding a power series up to terms of order x5 to
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Figure 5: Preliminary results for CEL at NT = 6,8, and 10 (left), and in the continuum limit (right).

eq. (3.2)

y = b0 +a0x2/5 +
5

∑
i=1

aixi , (3.3)

where b0 = 6.71 and ai are free parameters. By fixing b0 we obtain reasonable χ2/d.o.f., 1.3. We
could not find reasonable fitting neither without fixing b0 nor with less polynomial order fitting
functions.

Further estimation is possible by using results for NF = 3 and assuming that there is no NT

dependence in the shape of CEL. The normalized pseudo scalar masses at CEP and the SU(3)
flavor symmetric point for each NT,

√
t0msym

PS,E,NT
are

√
t0msym

PS,E,6 = 0.5282(12) ,
√

t0msym
PS,E,8 = 0.3977(19) ,

√
t0msym

PS,E,10 = 0.3006(19) ,
√

t0msym
PS,E,∞ < 0.1281(61) ,

(3.4)

where the result in the continuum limit (at NT =∞) is an upper bound. Since the updated continuum
limit of CEP at the SU(3) flavor symmetric point is still preliminary, we estimate the upper bound
of CEL in the continuum limit by using previous published results [16]. For example, we obtain
CEL at NT = 8 by scaling

√
t0mπ,E and

√
t0mηs,E by the ratio of

√
t0msym

PS,E,8 to
√

t0msym
PS,E,6. On the

above assumption, we find mtri
s ≲ 1.5mphy

s in the continuum limit.

4. Summary

We have determined CEP at the SU(3)-flavor symmetric point at NT = 12, and CEL away
from the SU(3)-flavor symmetric point at NT = 6 with non-perturbatively O(a)-improved Wilson
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fermions. We presented preliminary results for CEP in the continuum limit and CEL at NT = 8,10
and in the continuum limit. We found that a linear continuum extrapolation including new data
is reasonable and gives preliminary results at CEP in the continuum limit:

√
t0mPS = 0.1262(57),√

t0T = 0.09968(36). Moreover, 3 series of multi-ensemble, multi-parameter reweighting well
determine CEL, where CEL at NT = 6 is nice agreement with ms −mtri

s ∼ m2/5
l in the small ml

region, with mtri
s ≲ 1.5mphy

s as a very preliminary result.
This research was supported by Multidisciplinary Cooperative Research Program in CCS, Uni-

versity of Tsukuba and projects of the RIKEN Supercomputer System.
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