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We study the endpoint of the first order deconfinement phase transition of 2 and 2+1 flavor QCD
in the heavy quark region. We perform simulations of quenched QCD and apply the reweighting
method to study the heavy quark region. The quark determinant for the reweighting is evaluated
by a hopping parameter expansion. To reduce the overlap problem, we introduce an external
source term of the Polyakov loop in the simulation. We study the location of critical point at
which the first order phase transition changes to crossover by investigating the histogram of the
Polyakov loop and applying the finite-size scaling analysis. We estimate the truncation error of the
hopping parameter expansion, and discuss the lattice spacing dependence and the spatial volume
dependence in the result of the critical point.
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1. Introduction

In 2+1 flavor QCD, there exist two first order phase transition regions in the quark mass param-
eter space. When all the three quarks are massless, the chiral phase transition is first order. Many
studies have been made to determine the critical mass where the first order transition at small quark
masses changes to a crossover. The critical mass turned out to be close to the physical point and
thus its quantitative determination is phenomenologically important. However, the continuum limit
of the critical mass has not been obtained conclusively. Another first order transition region locates
around the heavy quark limit. When all the quarks are infinitely heavy, QCD is just the pure gauge
SU(3) Yang-Mills theory (quenched QCD), which is known to have a first order deconfinement
transition. This first order transition changes to crossover when the quark mass becomes smaller
than a critical value. However, its continuum limit is also not well understood.

In this study, we investigate the critical quark mass on lattices with Nt = 6 and 8, extending
our previous study at Nt = 4 [1, 2]. We first use a histogram method combined with the reweighting
method to study the critical point in 2 and 2+1 flavor QCD in Sec. 2. We also discuss the limitation
of the reweighting from quenched QCD due to the overlap problem. To reduce the overlap problem,
we perform simulations of an effective action containing a Polyakov loop term in Sec. 3. We
determine the critical point by the finite volume scaling analysis. Section 4 is devoted to a summary.

2. Histogram method

We study the phase structure of QCD around the endpoint of first order phase transition line
by the histogram of the absolute value of the Polyakov loop |Ω|, which we define as

W (|Ω|;β ,K) =
∫

DU δ (|Ω|− |Ω̂|) e−Sg
Nf

∏
f=1

detM(K f ), Sg = 6Nsiteβ P̂, (2.1)

where P̂ is the average plaquette, detM is the quark determinant, β = 6/g2 is the gauge coupling,
Nsite = N3

s ×Nt is the number of lattice sites, Nf is the number of flavors, and K f is the hopping
parameter for the f th flavor. For the quarks, we adopt the standard Wilson quark action. In terms
of the histogram, the probability distribution function of |Ω| is given by Z −1(β ,K)W (|Ω|;β ,K)

with Z the partition function defined by Z (β ,K) =
∫

W (|Ω|;β ,K)d|Ω|.
We then define our effective potential by Veff(|Ω|) = − lnW (|Ω|). On a first order transition

line, Veff is double-well type. The double-well turns into a single-well when the quark mass closses
the endpoint of the first order transition line which we call the critical point.

We adopt the hopping parameter expansion to compute the quark determinant in the heavy
quark region [1]. Up to the next-to-leading order contributions, the quark determinant for each
flavor is expanded as

lndetM(K) = 288NsiteK4P̂+768NsiteK6 (3Ŵrec +6Ŵchair +2Ŵcrown
)
+ · · ·

+12×2Nt N3
s KNt ReΩ̂+36×2Nt N3

s NtKNt+2

(
2

Nt/2−1

∑
n=1

ReΩ̂n +ReΩ̂Nt/2

)
+ · · · , (2.2)

where Ŵrec, Ŵchair, Ŵcrown are the 6-step Wilson loop operators of rectangle-type, chair-type, and
crown-type, respectively, and Ω̂n is the (Nt + 2)-step bended Polyakov loop, which contains two
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Figure 1: Veff (left) and ∆Veff (right) obtained by the hopping parameter expansion up to the next to leading
order on a 243 ×6 lattice.

spatial links and n temporal links between these spatial links. The first term with P̂ can be absorbed
into the plaquette gauge action by a shift β → β ∗ ≡ β + 48∑Nf

f=1 K4
f , where we have summed

up contributions of all flavors. The terms with 6-step Wilson loops can also be absorbed into
improvement terms of improved gauge action. Because a shift in improvement parameters only
affects the amount of lattice discretization errors within the same universality class, the 6-step
Wilson loop terms will not affect characteristic physical properties of the system in the continuum
limit, such as the order of the phase transition. Therefore, in this study, we concentrate on the
influence of Polykov-loop-type terms in Eq. (2.2). To study the truncation error of the hopping
parameter expansion, we perform both the leading order (LO) calculation keeping only the O(KNt )

term, and the next-to-leading order (NLO) calculation in which the O(KNt+2) terms are also taken
into account.

We investigate how the shape of Veff is changed by variation of the quark mass. We thus need
to know Veff in a wide range of |Ω|. This is not straightforward with a single simulation because
the statistical accuracy of Veff quickly drops down off the minimum point where |Ω| is the most
probable. To confront the issue, we combine information at several simulation points by the multi-
point reweighting method [1, 2]. To stay close to the first order transition line, we adjust β for each
K so that two minimum values of Veff are as equal as possible. We then measure the difference
between the peak height in the middle of Veff and the minimum value, which is denoted as ∆Veff.
We define the critical point Kct as K where the difference ∆Veff vanishes.

We perform simulations of quenched QCD on 243 × 6, 323 × 6, 363 × 6, and 243 × 8 lattices
using the pseudo heat bath algorithm with over relaxation. We investigate the critical mass mainly
on the Nt = 6 lattices. The lattice spacing a is given by a = (NtTc)

−1 for a simulation at the
transition temperature Tc. To evaluate the lattice spacing dependence, i.e., Nt dependence, we use
the results for Nt = 4 obtained in Ref. [1] and perform an additional simulation on a lattice with
Nt = 8. Simulations at 4-6 β points around the transition point are combined by the multi-point
histogram method. Details of the simulations are given in Ref. [3].

2.1 Critical point in two flavor QCD

2.1.1 Results at Nt = 6

In the left panel of Fig. 1, we show Veff for two flavor QCD on the 243 × 6 lattice computed
with the NLO lndetM given in Eq. (2.2). We find two minima for K = 0.0 and 0.116, while
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it becomes almost flat at the minimum for K = 0.120. We plot ∆Veff as a function of K in the
right panel of Fig. 1. Fitting the smallest four data by a linear function (dashed line), we obtain
Kct = 0.1202(19).

Repeating the same calculation only with the LO term, we obtain Kct = 0.1359(30) on the
243 ×6 lattice, and Kct = 0.1286(40) on the 323 ×6 lattice. Though these Kct with different spatial
volumes are roughly the same within the statistical errors, their central values may be suggesting
that Kct decreases at Nt = 6 as the spatial volume increases. We have also tried to calculate Kct on
a 363 × 6 lattice. However, unlike the cases of 243 × 6 and 323 × 6 lattices, the overlap problem
turned out to be severe on this lattice to obtain a reliable Veff up to the critical point [3]. We come
back to the issue of overlap problem in Sec. 3.

Effective NLO method: Before proceeding to other issues, let us discuss a method, introduced
in Ref. [2], to effectively incorporate NLO effects in the LO calculation of Veff and Kct . The basic
observation of Ref. [2] is that the bended Polyakov loops Ω̂n have strong linear correlation with
Ω̂ on each configuration and are well approximated by ReΩ̂n ≈ cn ReΩ̂, where cn = ⟨ReΩ̂n/ReΩ̂⟩.
Substituting this into Eq. (2.2), we find that the NLO effects can be absorbed by a shift of K.
Denoting Kct calculated only with the LO term as Kct,LO, the Kct effectively including the NLO
terms can be obtained by solving

KNt
ct,eff

(
1+CΩ NtK2

ct,eff
)
= KNt

ct,LO, CΩ ≡ 6
Nt/2−1

∑
n=1

cn +3cNt/2. (2.3)

On the 243 ×6 lattice, we find that Kct,eff = 0.1205(23), which is consistent with Kct = 0.1202(19)
computed directly with the NLO contributions. We thus find that the effective NLO method works
well. The method is useful in avoiding repeated analyses, e.g., for various number of flavors.

Truncation error of hopping parameter expansion: We now compare the LO and NLO results
for Kct . We find that NLO Kct is about 10% smaller than the LO results. This means that the trun-
cation error of the hopping parameter expansion in Kct is larger than the statistical errors for Nt = 6.
This is in contrast to the case of Nt = 4: On the 243 ×4 lattice, we obtain Kct,eff = 0.0640(10) with
the effective NLO method, to be compared with the LO value Kct,LO = 0.0658(3)(+4

−11) [1]. We thus
find that, for Nt = 4, the truncation error is about 3% and small in comparison with the statistical
errors [2]. Careful treatments including higher order terms are required for Nt ≥ 6.

2.1.2 Towards the continuum limit of the critical point

Our results of Kct on 243 × 4 and 243 × 6 lattices are summarized in Table 1. The effective
NLO method was used for the NLO value for Nt = 4. We note that Kct for Nt = 6 is about twice
larger than that for Nt = 4. We have also calculated Veff on a 244 ×8 lattice. However, Veff remains
double-well up to quite large K where the hopping parameter expansion is not applicable. Thus,
we can not find Kct for Nt = 8 with the present method [3].

To make the physical implication of the values of Kct clearer, we calculate the pseudo-scalar
meson mass mPS at Kct by performing additional zero-temperature simulations. In this study, we
perform the following two simulations: One is the direct two flavor full QCD simulation adopting
the same combination of gauge and quark actions and adjusting the simulation parameters (β ,K) to
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Table 1: The critical point Kct on 243×4 and 243×6 lattices calculated by LO and NLO hopping parameter
expansion of two flavor QCD. Also listed are the values of mPS/Tc at Kct , computed by the reweighting
method and by the two flavor full QCD simulation, on a zero-temperature 163 ×32 lattice.

up to LO reweighting full QCD up to NLO reweighting full QCD
lattice Kct mPS/Tc mPS/Tc Kct mPS/Tc mPS/Tc

243 ×4 0.0658(10) 15.47(14) 15.47(14) 0.0640(10) 15.74(14) 15.73(14)
243 ×6 0.1359(30) 7.88(69) 7.43(78) 0.1202(19) 11.29(40) 11.15(42)

the critical point obtained in the finite-temperature study. Another is the quenched QCD simulation
combined with the reweighting method, as adopted in the determination of Kct with the LO hopping
parameter expansion. As we discussed, the effect of the plaquette term can be absorbed by the shift
β → β ∗. In both full and quenched simulations, we generate configurations by the hybrid Monte
Carlo algorithm on 163 ×32 lattices. The number of configurations is 52 at each simulation point.

Our results of mPS/Tc at Kct are listed also in Table 1. The errors for mPS/Tc contain that
propagated from the error of Kct . We find that the results of full QCD and reweighting calcula-
tions are consistent within the errors. This means that the reweighting method is effective and
the disregarded 6-step Wilson loops in the reweighting method have no large effects also on the
pseudo-scalar meson mass. On the other hand, for Nt = 6, corresponding to the difference of Kct

between the LO and NLO calculations, mPS/Tc at the NLO Kct is 1.4 times smaller than that at the
LO Kct . If we estimate the systematic error from the truncation of the hopping parameter expansion
by the difference between the LO and NLO calculations, we obtain mPS/Tc = 11.15(42)(372) for
Nt = 6. Because this is smaller than mPS/Tc = 15.73(14)(26) for Nt = 4, our results suggest that
the critical quark mass decreases as the lattice spacing decreases.

2.2 Critical line in 2+1 flavor QCD

The effective NLO relation (2.3) can be easily generalized to any number of flavors. E.g., the
critical line in the (Kud ,Ks) space in 2+1 flavor QCD is given by

2KNt
ct,ud

(
1+CΩ NtK2

ct,ud
)
+KNt

ct,s
(
1+CΩ NtK2

ct,s
)
= 2KNt

ct,LO, (2.4)

where Kct,LO is the LO Kct for Nf = 2. By solving this equation using Kct,LO obtained on the
243 × 4 and 243 × 6 lattices, we obtain green curves in Fig. 2 for Nt = 4 (left) and Nt = 6 (right),
respectively. The red curves in Fig. 2 are for the LO critical line calculated by Eq. (2.4) with the
terms proportional to CΩ removed. The difference between the two curves is an estimate for the
truncation error of the hopping parameter expansion.

3. Effective heavy quark QCD with Polyakov loop

We found that the overlap problem occurs in the determination of Kct on the 363×6 lattice [3].
As an attempt to avoid the overlap problem, we perform simulations with an effective action for
QCD with heavy quarks, Seff =−6Nsiteβ P̂−N3

s λReΩ̂. The Polyakov loop term corresponds to the
LO hopping parameter expansion of lndetM with λ = 12× 2Nt NfKNt . Because a heat bath algo-
rithm is applicable to this action, the computational cost is much smaller than full QCD simulations.
We include the NLO contributions by reweighting.

4
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Figure 2: Critical line of 2+1 flavor QCD on the 243 ×4 (left) and 243 ×6 (right) lattices.

48 第 5章 ビンダーキュムラントによる解析

5.2.2 ビンダーキュムラントによる臨界点の解析結果

各 (Ns, λ)におけるビンダーキュムラントの最小値と、周期的境界条件が課された L×L×Lの格子で

計算された３次元イジング模型のビンダーキュムラントの値 [19]をプロットしたものを図 5.3に示す。
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図 5.3 ポリヤコフループのビンダーキュムラントを用いた交差点解析。ピンクの線は３次元イジング

模型のビンダーキュムラントの値を示す。

図 5.3では、３次元イジング模型のビンダーキュムラントの値より少し大きい位置に交点を持っているよ

うに見える。ここから更に詳しく交点の位置を調べるためにフィットを行った（付録 B参照）。式 (5.1.8)

よりフィットの関数は

B4(Ns, λ) ≡ Bcp +AN1/ν
s (λ− λcp) (5.2.1)

を採用した。そして、交点に近い λ = 0.004, 0.005の 8点を用いて、Bcp, A, ν, λcp の４つのパラメータ

についてフィットした結果を図 5.4と表 5.2に示す。
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図 5.4 交点のフィット。３次元イジング模型のビンダーキュムラントの値 [19] より僅かに大きい位

置に交点を持つ。破線はフィットした関数を表す。

Figure 3: λ dependence of B4 at the transition point.

Simulations are performed on Nt = 4 lattices with Ns = 32, 36, 40, and 48. We generate
gauge configurations for several values of (β ,λ ), and study dependence on these parameters by the
multi-point reweighting method. The number of configurations is 600,000 for each β and λ . In
this study, we identify the critical point by the Binder cumulant of the Polyakov loop,

B4 =
⟨(Ω−⟨Ω⟩)4⟩
⟨(Ω−⟨Ω⟩)2⟩2 . (3.1)

At the critical point λct , B4 is independent of the spatial volume. The value of B4 at λct depends on
the universality class.

The results of B4 on the first order transition line are plotted in Fig. 3 as function of λ . As
shown in this figure, the lines of B4 with different volumes cross at one point. We fit the data
with B4(Ns,λ ) = B4ct + AN1/ν

s (λ − λct), where B4ct , A, ν and λct are the fit parameters. B4ct

and λct correspond to B4 and λ at the critical point, respectively. From fit using data of all four
volumes, we obtain λct = 0.004754(84), B4ct = 1.644(13) and ν = 0.65(8). When we fit data of
the largest three volumes corresponding to Ns = 36, 40, and 48 only, we get λct = 0.00468(11),
B4ct = 1.630(20) and ν = 0.65(11). These results are almost consistent with those expected from
the universality class of the 3D Ising model: BIsing

4ct = 1.604 and ν Ising = 0.63.
The result λct = 0.004754(84) corresponds to Kct = 0.05932. This is 10% smaller than the

result obtained by the histogram method on the 243 × 4 lattice. To understand this difference, we
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Figure 4: Spatial volume dependence of the histograms at λ = 0.004 and 0.005.

investigate the volume dependence of the histogram at the transition point. As we mentioned in
the previous section, Kct decreases as the volume increases. The histograms just above and below
λct are plotted in Fig. 4. For the case of λ = 0.004 < λct (left), the central dent in the histogram
gets deeper as the volume increases. On the other hand, for λ = 0.005 > λct (right), the central
dent becomes shallower. These are consistent with the picture that λct is the boundary that divides
regions with one peak and two peaks in the volume infinity limit.

4. Summary

We studied the location of critical point at which the first order phase transition changes to
crossover in the heavy quark region by investigating the histogram of the Polyakov loop and ap-
plying the finite-size scaling analysis. We performed simulations of quenched QCD together with
reweighting method. The quark determinant is evaluated by the hopping parameter expansion.
Truncation error of the hopping parameter expansion is visible for Nt = 6. Higher order terms are
needed for large Nt . Overlap problem arises for large volume. To reduce the overlap problem, we
introduce an external source term of the Polyakov loop in the simulation. The value of B4 at the
critical point is almost consistent with that of 3D ising model.
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