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We extend the spectral projectors method to staggered fermions. Applying the index theorem to
the staggered Dirac operator it is possible to work out an expression for the topological suscep-
tibility which depends only on the orthogonal projectors on quasi zero-modes, as it has already
been done for Dirac-Wilson fermions. Besides, we generalize this method deriving analogous
expressions for all higher-order coefficients in the 6-expansion of the vacuum energy.

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

*Speaker.
fCorresponding author.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/


mailto:claudio.bonanno@pi.infn.it
mailto:giuseppe.clemente@pi.infn.it
mailto:massimo.delia@unipi.it
mailto:sanfilippo@roma3.infn.it

Spectral Projectors with Staggered Fermions Claudio Bonanno

1. Introduction

The topological properties of the gauge sector of QCD and QCD-like theories, and the related
6-dependence, is one of the most extensively studied non-perturbative features of these models and
Monte Carlo simulations on the lattice are the most natural choice to investigate them.

The continuum definition of the topological charge in Yang-Mills theories can be expressed in
terms of gluon fields as

1
0= / d4xm£”vchlfv(x)Fﬁc(x), (1.1)

and is integer valued when proper boundary conditions are chosen (such as periodic ones on a finite
volume). This quantity can also be related to fermion field properties via the index theorem:

Q =Index{P} =ny —n_ =Tr{p}, (1.2)

where n. are, respectively, the number of left-handed and right-handed zero-modes of /). On the
lattice, many definitions of topological charge can be assigned, all agreeing in the continuum limit
but with different discretization corrections.

Gluonic definitions are defined rewriting Eq. (1.1) in terms of lattice gauge links. Despite
having the correct continuum limit, they are non-integer and their correlation functions are subject
to multiplicative and additive renormalizations, which have to be properly treated (e.g. by using
smoothing methods such as cooling or gradient flow to damp UV fluctuations).

Fermionic definitions are instead based on a counting of zero-modes, cf. Eq. (1.2), and in
principle they can be obtained from the evaluation of Tr{y5} on a diagonal basis of the lattice
Dirac operator. This however presents some difficulties related to the lattice implementation of
chiral fermions. Indeed, while some particular discretizations (such as overlap fermions) satisfy
an approximate chiral symmetry and possess exact chiral modes, some others (e.g. Wilson or
staggered fermions) do not. Because of this, defining the lattice topological charge as the trace
of the discretized 5 requires proper renormalizations [1, 2, 3]. The spectral projectors method,
which relies on the latter strategy, has been used to obtain a theoretically well-posed definition
of the continuum topological susceptibility ¥ = (Q?) /V [4, 5] which is also easily adaptable for
numerical simulations on the lattice. Up to now, this method has been defined for Dirac-Wilson
fermions and successfully tested in pure Yang-Mills theories [6, 7] and in full QCD [8].

Since all the methods exposed above yield the same results when the continuum limit is taken,
which method should be adopted can be decided considering two main issues: computational cost
and the magnitude of corrections to the continuum limit. The second aspect can be particularly
relevant when dealing with dynamical fermions with light masses. In the continuum, zero-modes
of I) suppress configurations with non-zero charge; on the lattice, instead, the presence of large
would-be-zero-modes fails to efficiently suppress such configurations, resulting in larger values of
x- This makes the extrapolation towards the continuum particularly difficult, both at zero and finite
temperature [9, 10, 11, 12, 13].

A recently-proposed heuristic solution is to reweight configurations by hand using the con-
tinuum lowest eigenvalues [11]. Instead, a theoretically better founded solution could be to use a
fermionic definition of the topological charge matching the same discretization of the sea quarks.
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This possibility is supported by a recent study [8], where the topological susceptibility of QCD
with twisted mass Wilson fermions is measured through twisted mass spectral projectors, resulting
in an improved scaling towards the continuum compared to the standard gluonic measure.

In this paper we summarize the main ideas and results of [14] (to which we refer for further
details), where the spectral projectors definition of y is extended to the case of staggered fermions,
the main motivation being to adopt it in ongoing lattice investigations of 8-dependence in full QCD
with staggered fermions [13]. Besides, the method is also generalized to any higher-order cumulant
of the charge distribution, which are related to higher-order coefficients of the 8-expansion of the
free energy. Given these aims, the shown numerical results will be limited to the quenched case,
while results for full QCD will be presented in a separate work.

This paper is organized as follows: in Section 2 we define spectral projectors in the case
of staggered fermions, deriving spectral expressions for the topological susceptibility and for all
higher-order cumulants, in Section 3 we present numerical results for the pure SU (3) gauge theory
and in Section 4 we discuss conclusions and future perspectives.

2. Spectral projectors method for staggered fermions

2.1 Spectral definition of topological observables

The index theorem for the staggered Dirac operator Dy, in d space-time dimensions can be writ-
ten considering that, in the continuum, it describes 2¢/2 degenerate flavors: Qqy = (—2)~%/?> Tr{I's},
where I's is the staggered discretization of 5. The renormalization of the bare charge has been dis-
cussed in Refs. [2, 3], where we refer the reader for further details. Making use of the anomalous
Ward identities for staggered fermions, the renormalized staggered charge is

()
Z
QSI‘ - [()‘) QOSU (2 1)
A

S
where ng) and Z,(f) refer, respectively, to the scalar and pseudo-scalar flavor-singlet bare densities
So = Yy and Py = yI'5y. Following the same line of reasoning of Ref. [5], the ratio Zés) / Z;,S) can
be expressed as

s 2
zZe"\"_ (mr{Pu}) 2.2)
Zz0 (Te{TsPyuTsPy})’ |

where [Py, is the spectral projector on eigenspaces of Dy, with eigenvalues —iA with 12 < M?. Since
the bare charge Qo can be expressed in terms of Py, as Qo = (—2)*"/ 2Tr{T'sIPy}, the staggered
spectral expression for the topological susceptibility can now be written:

3 2
g (Z00) (@) _ L (Tr{Pu})  (Tr{[sPu}?) 03
Zés) \% 2d <Tr{r5PMr5PM}> %

Similar expressions can be obtained for higher-order cumulants of the topological charge distribu-
tion P(Q), which we parametrize as

2 <Q2n+2>c
2n+2)t (@%)

by =(—1)" 2.4)



Spectral Projectors with Staggered Fermions Claudio Bonanno

where (Q).. denotes the k"-order cumulant of P(Q). Indeed, following the same line of reasoning
adopted for the susceptibility, one obtains:

)\ 21 n
b = (1) (z“) (05,

(2n+2)! ng) <Q3st>
G (e >"<Tr{FsPM}2””>c @s)
—2dn (20 42)! \ (Tr{[sPyTsPy}) (Tr{IsPu}?) - '

2.2 Choice of the cut-off mass M

The choice of the cut-off mass is irrelevant in the continuum limit since, for the index theorem,
only zero-modes contribute to the topological charge. However, corrections to the continuum limit
depend on M and a prescription to hold the renormalized cut-off Mp = M /Zés) fixed as the lattice
spacing a — 0 is needed to guarantee O(a?) lattice artifacts [2, 5].

Our prescription is to keep the mode density (v) /V fixed in physical units for each lattice
spacing. Indeed, using leading order chiral perturbation theory and the Banks-Casher relation [5]
one has:

M 2 2 _
<V<V ) _ M= _TrMg, L=- (Wy) = —(S0), (2.6)

where V(M) is the number of eigenmodes below M and X is minus the chiral condensate in the
thermodynamic and chiral limit. Since Zg‘v) is the renormalization constant for both the chiral
condensate and the inverse mass, the product XM is a renormalization-group-invariant quantity.
Therefore, to keep Mg constant, it is sufficient to tune M as a function of a in order to hold (v) /V
fixed for all lattice spacings.

3. Numerical tests in the quenched theory

3.1 Spectral measure of y at7 =0

Simulations were performed using the standard plaquette action on hyper-cubic lattices (with
lattice sizes in the range 1.2 - 1.8 fm) for 4 different values of the coupling: = {5.9, 6.0, 6.125, 6.25}.
For each 8 we collected 300 decorrelated configurations and measured ) both by the spectral
method and with a gluonic definition. The one adopted here is the clover discretization measured
after cooling and rounded to the nearest integer, following the lines of Refs. [15, 16].

In order to extrapolate ysp towards the continuum, we considered determinations at two fixed
values of the renormalized mass Mg, i.e. at two different values of (v) /V. As shown in Tab. I,
the continuum value of ) obtained with spectral projectors is independent of the choice of Mg
and compatible with the gluonic measure within the errors. We also report other determinations
of x obtained by different fermionic methods: they all agree, within errors, with the staggered
spectral results. Continuum extrapolations of ysp and X, are shown in Fig. 1. Lattice artifacts
have a weak dependence on the cut-off Mg and their magnitude is comparable to the one of those
affecting the gluonic measure (similarly to what happens with Wilson spectral projectors [6, 7]).
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Method rax

Staggered Spectral Projectors, Mg = M || 0.067(11)
Staggered Spectral Projectors, Mg = M, || 0.065(12)

Gluonic Definition 4 Cooling 0.058(9)
Wilson Spectral Projectors [6] 0.067(3)
Overlap Operator [17] 0.059(3)

Table 1: Comparison between continuum determinations of y for the pure-gauge SU(3) theory. The renor-
malized cut-offs M; and M5 correspond respectively to 73 (v) /V =1-1073 and 3- 1072, where ry ~ 0.5 fm
is the Sommer parameter.
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Figure 1: Continuum extrapolations of ¥sp and X, at T = 0.

3.2 Spectral measure of b, at finite 7

The fourth cumulant of P(Q) is parametrized through the b, coefficient, cf. Eq. (2.4),

2

10930

by =— 3.1
2 B o (3.1
From Eq. (2.5) we get its staggered spectral expression:
2
pp_ L1 (Tr{Pu})  (Tr{TsPy}") = 3(Tr{TsPy}?)
SP—_ . (3.2)

Zjﬁ <TI’{F5PMF5PM}> <TI'{F5IPM}2>

The measure of b, at zero temperature requires quite large statistics since b, encodes deviations of
P(Q) from a Gaussian, which turn out to be quite small [15, 16, 18, 19, 20, 21]. Thus, we tested
the numerical determination of b, via spectral projectors in the deconfined phase of the SU(3)
pure-gauge theory. Indeed, in the high-T regime its value is larger than the 7 = O one because it
approaches the prediction b, = —1/12 from the Dilute Instanton Gas Approximation (DIGA).

In this case we considered a 303 x 10 lattice with 8 = 6.305, corresponding to 7 ~ 338 MeV ~
1.145 T... In Fig. 2 we show results obtained for bgP as a function of the bare cut-off mass M.
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In this case we do not perform any continuum limit, thus we do not fix any value of M. As it
can be appreciated, spectral results are well compatible, over a wide range of M, with the gluonic
determination of b, obtained from the same configuration sample.

1.2

02y == gluonic

3 é spectral projectors
|®
0

1 2 3
M x1072

Figure 2: Behavior of —12b‘§P at T ~ 338 MeV with the bare cut-off mass aM, compared to the gluonic
measure obtained on the same sample.

4. Conclusions

In this paper we reported on the main results of [14], where the spectral projectors method is
extended to staggered fermions. In particular, we derived spectral expressions for the topological
susceptibility y and for the b,, coefficients, taking into account the renormalization of the fermionic
charge and the fourfold degeneracy of the staggered operator, and we tested them in the pure SU (3)
gauge theory, both at zero and finite temperature. Our results are in agreement with the ones
obtained by other definitions, both gluonic and fermionic.

In this case lattice artifacts affecting spectral measures are comparable to those affecting glu-
onic ones, unlike what happens in QCD at physical quark masses. In that case, since non-zero-
charge configurations are not efficiently suppressed in the path integral because of the presence
of large would-be-zero-modes, topological observables suffer for larger discretization effects com-
pared to the quenched case. Results obtained in [8], instead, show that a spectral fermionic defi-
nition of ), matching the same discretization adopted for the Monte Carlo evolution, can strongly
reduce such discretization errors and greatly improve the accuracy of the continuum extrapolation.

For this reason, in the near future we plan to apply spectral methods to improve the study
of topological observables in high-7" QCD with staggered fermions. This investigation will be
presented in an upcoming work.
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