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1. Introduction

The strong coupling αs can be measured quite accurately by matching observables
computed in perturbation theory and lattice QCD [1, 2]. Among different methods, the
extraction of αs from the energy, E(r) of a static quark-antiquark pair located at a distance
r, can be done both on the lattice and perturbatively.

The static energy E(r), which is an important quantity in pure gauge theory as well as
in QCD, can be determined using lattice gauge theory by computing rectangular Wilson
loops with spatial extent r and large temporal extent T ,

E(r) =− lim
T→∞

ln〈Tr(Wr×T )〉
T

, Wr×T = P

{
exp

(
i

∮
r×T

dzµ gAµ

)}
, (1.1)

where P{. . .} stands for path ordering. On the other hand the perturbative expression for
E(r), which is valid for small separations r� 1/ΛQCD and αs� 1, is known up to N3LL
order [3],

E(r) = Λ−CF
αs
r

{
1 + αs

4π ã1 +
(αs

4π

)2
ã2 +

(αs
4π

)3
[
aL

3 log CAαs
2 + ã3

]

+
(αs

4π

)4
[
aL2

4 log2 CAαs
2 +aL

4 log CAαs
2 + ã4

]}
, (1.2)

where Λ is a constant, αs ≡ αs(1/r), CF = 4/3 and CA = 3 for SU(3), and, the constants
ãk, a

L
k are summarized in Ref. [4]. See also Ref. [4] for references to the original literature.

The lattice result and the perturbative result for E(r) differ by a constant related to the
self-energy. In lattice gauge theory the self-energy diverges as 1/a (a denotes the lattice
spacing), while in perturbation theory, when using dimensional regularization, there is a
renormalon ambiguity.

The different but constant self energies can be eliminated by taking the spatial deriva-
tive of the static energy, i.e., by considering the static force F (r) = ∂rE(r). This approach
has a long history [5], but taking numerical derivatives of the lattice result for the static
energy typically increases numerical errors. In this work we, thus, explore a different ap-
proach, which was proposed in Ref. [6], the direct lattice computation of the static force
using

F (r) =− lim
T→∞

i

〈Tr(Wr×T )〉

〈
Tr
(
P

{
exp

(
i

∮
r×T

dzµ gAµ
)

r̂ ·gE(r, t∗)
)}〉

, (1.3)

where r̂ is the direction of the separation of the static color charges and E(r, t) denotes the
(Euclidean) chromoelectric field located on one of the temporal Wilson lines at −T/2 <
t < T/2. The right hand side of (1.3) is independent of t∗ as long as t∗ is a fixed time.

2. Derivation of Eq. (1.3)

Equation (1.3) was first derived in [7]. In the following, we illustrate the derivation in
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the Abelian case, where traces and path ordering can be ignored. The generalization to
the non-Abelian case is straightforward and can be found in detail in Ref. [8].

We start by applying the spatial derivative to the static energy, which can be expressed
in terms of Wilson loops as done in Eq. (1.1),

F (r) = ∂rE(r) =− lim
T→∞

〈∂rWr×T 〉
T 〈Wr×T 〉

. (2.1)

The spatial derivative of the Wilson loop can be written as a finite difference,

∂rWr×T = lim
∆→0

1
∆

(
W(r+∆)×T −Wr×T

)
=Wr×T lim

∆→0

W∆×T −1
∆ , (2.2)

and

lim
∆→0

W∆×T −1
∆ = lim

∆→0

1
∆

(
exp

(
i

∮
∆×T

dzµ gAµ
)
−1
)

=

= lim
∆→0

1
∆

(
exp

(
i

∆

∫ T
2

−T
2

dt
∮

∆×∆
dzµ gAµ

)
−1
)

=

= lim
∆→0

1
∆

(
exp

(
i∆
∫ T

2

−T
2

dt r̂ ·gE(r, t)
)
−1
)

= i

∫ T
2

−T
2

dt r̂ ·gE(r, t) , (2.3)

where lim
∆→0

(1/∆2)
∮

∆×∆
dzµ gAµ = r̂ · gE(r, t) has been used. Combining Eqs. (2.1), (2.2)

and (2.3) leads to

F (r) =− lim
T→∞

i

T 〈Wr×T 〉

〈
Wr×T

∫ T
2

−T
2

dt r̂ ·gE(r, t)
〉

=− lim
T→∞

i

〈Wr×T 〉

〈
Wr×T r̂ ·gE(r, t∗)

〉
,

(2.4)

which is the Abelian version of Eq. (1.3). The last equality holds when the limit T →
∞ is taken for a specific choice of t∗. In actual simulations with finite T we use the
expression on the right hand side of this equality, because corrections to the T →∞ result
are exponentially suppressed with respect to T , while for the expression on the left hand
side corrections may be only 1/T suppressed.

3. Details of the lattice computation

In our exploratory study, we compute the static force in pure SU(3) lattice gauge theory
by evaluating the right hand side of Eq. (1.3) on the lattice. This is done by inserting a
chromoelectric field to a Wilson loop in a gauge invariant way [9, 10]. We perform this
calculation in two different ways:

(1) We consider lattices with large temporal extent T and represent the closed loops∮
r×T

. . . by two Polyakov loops (i.e., omitting the spatial parallel transporters) using
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the Butterfly definition for the chromoelectric field:

Ei = 1
2

(
F0i+F−i0

)
, Fµν = 1

2iga2

(
Pµ,ν−P †µ,ν

)
, (3.1)

where Pµ,ν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) denotes the plaquette. The expecta-
tion values are computed using the multilevel algorithm [11] with 4 sublattices and
6000 sub-updates, where we have generated around 100 gauge link configurations for
each ensemble.

To reduce discretization errors, we redefine the separation r such that the tree-level
results of F (r) from lattice and continuum perturbation theory match [12], i.e. r→
rI(r), where rI(r) is defined via

1
4πr2

I

= G(r+a)−G(r−a)
2a , (3.2)

with the lattice gluon propagator in coordinate space

G(r) = 1
a

∫ +π

−π

d3k

(2π)3

∏3
j=1 cos(xjkj/a)

4
∑3

j=1 sin2(kj/2)
. (3.3)

(2) We evaluate Eq. (1.3) by choosing t∗ as close to zero as possible and using the Clover
definition for the chromoelectric field:

Ei = 1
2iga2

(
Πi0−Π†i0

)
, Πµν = 1

4

(
Pµ,ν +Pν,−µ+P−µ,−ν +P−ν,µ

)
. (3.4)

We employ 50 APE-smearing steps on the links forming the spatial parallel trans-
porters of the closed loops

∮
r×T

. . . to maximize the ground state overlap. The expec-

tation values are computed on 400 gauge link configurations separated by 30 updates
each. The T →∞ limit is approximated by temporal separations T ≥ 8a.

4. Renormalization

The chromoelectric field appearing in Eq. (1.3) requires renormalization. For this
we use the Huntley and Michael (HM) procedure [13], which removes self-energy con-
tributions up to order O(g4). In detail we multiply the chromoelectric field by ZE =
Tr(Wr×T )/Tr(Wr×T Ē), where Ē is given by:

Ēi = 1
2

(
F̄0i+ F̄−i0

)
, F̄µν = 1

2iga2

(
Pµ,ν +P †µ,ν

)
, (4.1)

or

Ēi = 1
2iga2

(
Πi0 + Π†i0

)
, Πµν = 1

4

(
Pµ,ν +Pν,−µ+P−µ,−ν +P−ν,µ

)
, (4.2)
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Figure 1: Lattice results of the direct computation of the static force via Eq. (1.3). Left
plot: computation (1) with β = 6.0 (corresponding to a= 0.19r0) and lattice volume 204.
Right plot: computation (2) with β= 6.57 (corresponding to a= 0.08r0) and lattice volume
48×243.

for our two computations (1) and (2), respectively.

5. Numerical results

We have performed simulations for several values of the lattice spacing and several
lattice volumes, where we relate the coupling constant β and the lattice spacing a via [12]:

ln(a/r0) =−1.6804−1.7331(β−6) + 0.7849(β−6)2−0.4428(β−6)3 . (5.1)

Selected lattice results of the direct computation of the static force via Eq. (1.3) are
shown in Figure 1 (left plot computation (1), right plot computation (2)) in comparison
to the force obtained by taking the derivative of the static energy. For the latter we fit
a Cornell ansatz E(r) = V0−κ/r+σr to the lattice results for the static energy, which
leads to F (r) = κ/r2 + σ (black dashed curves). As expected, we observe that there is
better agreement with the HM renormalized data points for r2F (r) (orange dots) than
with the non-renormalized data points for r2F (r) (blue dots), especially in the left plot
where tree-level improvement is used.

For computation (1) we also study the continuum limit at constant physical volume of
extent 2.28r0 using lattice volumes 124, 164, and 204 with β = 6.0, 6.183, 6.3406 obtained
from Eq. (5.1). We interpolate the data with cubic splines and in Figure 2 we show
the continuum limit of r2F (r) for a single value of the (improved) separation r ≡ rI '
0.7r0. Even though our statistical precision is at the moment still limited, we observe clear
indication that the HM renormalized result for F (r) agrees with the derivative of E(r) in
the continuum limit, while the non-renormalized result for F (r) is significantly different.
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Figure 2: Continuum limit of r2F (r) for r = 0.7r0 at constant physical volume of extent
2.28r0 (computation (1)).
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