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We present updated results for the non-perturbative β -function of SU(3) gauge theories with
N f = 12 or 10 massless flavors in the fundamental rep or N f = 2 in the sextet rep, measured with
staggered fermions. New data at finer lattice spacing and our previously introduced method, the
infinitesimal β -function, strengthen the case that the N f = 12 model has no infrared fixed point
up to g2 = 7.2. We show how underestimated cutoff dependence in one domain wall study for
N f = 10 has been corrected, which is now consistent with staggered results showing a monoton-
ically increasing β -function. A consistent theme is that too small volumes can lead to apparent
fixed points which vanish towards the continuum limit. We also apply the infinitesimal β -function
method to the N f = 10 model, finding consistent behavior with the finite-step β -function. Ongo-
ing simulations and analysis for the sextet model confirm our previous results from weak to strong
coupling with a non-zero β -function throughout, in quantitative difference to Wilson fermion sim-
ulations [14].
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1. N f = 12

Lattice simulations are the tool of choice for non-perturbative determination of gauge theory
β -functions. This is particularly relevant for exploring models with possible near-conformal be-
havior. The use of the gradient flow has become standard, with step-scaling for continuum extrap-
olation. There have been repeated claims of an infrared fixed point (IRFP) for the SU(3) N f = 12
fundamental rep β -function [1, 2], of late using domain wall fermions [7, 9, 10], inconsistent with
our staggered studies [3]. To probe further the disagreement, we have generated new tuned data for
c =
√

8t/L = 0.2 at finer lattice spacing 32→ 64, which we find are completely in line with previ-
ous data and analysis (see Fig.1), reaffirming the absence of a fixed point in the range 0 < g2 < 7.2.
Comparison of Symanzik and Wilson variants of interpolated gradient flow data at c = 0.25 give
compatible continuum results, with the Symanzik β -function already positive at the finest lattice
spacings. The β -function is s-dependent, however overlaying the data point 48→ 64 for s = 4/3
emphasizes the proximity to a/L = 0, in contrast to domain wall simulations with 16→ 32 or
coarser, for which O(a4) fitting appears necessary.
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Figure 1: (Left) Continuum extrapolation of the step-scaling β -function for N f = 12. The new finest lattice
spacing data point 32→ 64 is fully consistent with previous results, with the overlaid point 48→ 64 with
s= 4/3 being very close to the continuum value for s= 2. (Right) Consistent continuum limits for Symanzik
(magenta) and Wilson (blue) discretizations of the gradient flow.

Our continuum N f = 12 β -function is flat in the region 6.0 ≤ g2 ≤ 7.2, covering the range
where IRFPs have previously been claimed (see Fig.2). At e.g. g2 = 6.98 the statistical significance
of our result is more than 10σ away from zero and incompatible with a fixed point. Comparing
the values c = 0.20 and 0.25 defining the finite-volume renormalization scheme, we find the same
qualitative behavior with no IRFP appearing, the value of c is not important. In addition we use our
previously introduced method [12] to calculate the infinitesimal β -function t ·dg2/dt directly from
lattice simulations (described in Sec.4), we show in Fig.2 a summary of the results with excellent
agreement with the finite-step β -function. How a transient fixed point can appear at coarse lattice
spacing is shown in Fig.2 for paired volumes 18→ 36, where g2 as a function of the bare coupling
crosses at g2 ∼ 6.3. Pushing to finer lattice spacing as in Fig.3 with volumes 32→ 64 the fixed
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Figure 2: (Left) Excellent agreement between the finite-step s = 2 c = 0.25 and infinitesimal β -functions
for N f = 12, essentially constant across the explored g2 range. Also shown are IRFP predictions from [2]
with staggered and [10] with domain wall, with an example of the attained accuracy. (Right) An example
for N f = 12 of an apparent fixed point at g2 ∼ 6.3 at coarse lattice spacing with paired volumes 18→ 36.
Blue points are the input data and red points are interpolations to targeted g2 values.

point has disappeared with a positive β -function throughout. The initial claim of an IRFP at g2 ∼ 6
with staggered fermions [1] was moved to g2 ∼ 7 [2], all based on smaller volume simulations,
and was not reconciled with the larger volume results of no IRFP for our staggered studies. The
IRFP is moved back to g2∼ 6 with numerically-expensive domain wall fermions [10] which cannot
reach the larger volumes and accuracy needed to resolve the existence or not of a continuum IRFP
e.g. with c = 0.25 the quoted result is −0.065 . β (g2 = 6). 0.025.

2. N f = 10

SU(3) gauge theory with N f = 10 massless fundamental rep flavors is an important anchor
point: if conformal with an IRFP, so also is the N f = 12 model with an IRFP at weaker coupling.
The N f = 10 model is also a template for the Higgs as a pseudo-Goldstone boson. A summary of
recent lattice work on the β -function of SU(3) with N f = 10 flavors is in Fig.3. Staggered studies
show the β -function increases monotonically in qualitative agreement with 5-loop perturbative
calculations [5]. Initial domain wall studies disagreed with one another at stronger coupling, with
one [6] predicting an IRFP at g2 ∼ 7, and the second showing a smaller downturn [7]. Both domain
wall results have been significantly changed much beyond statistical errors, one with the IRFP
no longer evident [8] and the other [9] now compatible with the staggered measurement, with
no indication of an IRFP. The cause is clear in Fig.4 (left). Step scaling L → sL with L/a =

8,10,12 shows apparent O(a2) lattice artifacts for the domain wall calculation, but additional data
at finer lattice spacing L/a= 16 exposes the necessary O(a4) term which dramatically increases the
continuum domain wall result. The concern is shared with N f = 12 studies: accurate data on small
volumes at coarse lattice spacing may show spurious O(a2) scaling, leading to an underestimate
of the β -function which only comes to light when larger volumes are added. Staggered data with
finer lattices up to L/a = 24 typically show O(a2) scaling, at this coupling the artifacts happen to
be small, the β -function is s-dependent but s = 2 and 3/2 data give very similar continuum results.
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Figure 3: (Left) The disappearance of the N f = 12 fixed point in Fig.2 at finer lattice spacing for volumes
32→ 64, with the discrete-step β -function positive throughout. (Right) Comparison of recent staggered and
domain wall determinations of the N f = 10 β -function.

We test systematically various discretizations of the gradient flow coupling. The Symanzik
gauge action is used in MC simulation, for the gradient flow we use both Symanzik and Wilson
variants, as well as Symanzik or Clover versions of the observable. We show in Fig.4 nice con-
tinuum agreement between two flow variants at a targeted strong coupling g2 = 7. Inclusion of
L/a = 12 not surprisingly requires an O(a4) term in the continuum extrapolation and is fully con-
sistent with an O(a2) fit of data with L/a ≥ 16. We find Symanzik flow and Clover observable
i.e. SSC has the smallest cutoff effects and is our natural reference choice. We explore various
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Figure 4: (Left) Comparison of continuum extrapolations for staggered (LatHC) and domain wall (Boul-
der). The new domain wall data point L/a = 16 shows O(a4) dependence, giving a compatible result with
staggered, resolving the discrepancy given by O(a2) fitting of domain wall with L/a = 8,10,12. (Right)
Systematic tests for N f = 10, varying the gradient flow and comparing O(a2) and O(a4) extrapolations
where L/a = 12 is omitted or included.

choices for the step-scale s and the finite-volume renormalization scheme c =
√

8t/L defining the
β -function. We compare in Fig.5 two values s = 2 and 3/2 and find only mild variation. Also
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included is our new infinitesimal β -function determination, showing the same qualitative behavior.
Given our set of volumes, the choice s = 4/3 allows us to push closer to the continuum limit with
the finest lattice spacing corresponding to 36→ 48. With mild cutoff effects ∼ 10% for the three
finer lattices, it is not possible to reconcile with the much smaller result of [8]. An additional test
(not shown) is a comparison of continuum results for c = 0.30 and 0.25. The former value, used
in domain wall studies, is important for direct comparison, however the β -function can be equally
well-determined at the smaller c value, where lattice artifacts can be well fit by an O(a2) form. The
broad conclusions are the same: at other c values we find monotonic increase in the β -function in
the range 5≤ g2 ≤ 8.
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Figure 5: (Left) The N f = 10 finite-step β -function shows mild dependence on the step scale s value. The
infinitesimal β -function shows the same behavior, and by integration can be used to predict the s = 2 finite-
step function. (Right) The choice s = 4/3 for N f = 10 yields a finest lattice spacing 36→ 48 close to the
continuum limit, and an extrapolated value far above zero.

3. N f = 2 sextet

The N f = 2 sextet model has been our flagship BSM candidate, given the match of 3 Goldstone
to 3 Electroweak gauge bosons, compiling evidence of spontaneous chiral symmetry breaking, and
a small but non-zero β -function. A refresh of the β -function ensembles and analysis is ongoing,
we show in Fig.6 examples at weak and strong coupling. Similar to our fundamental rep studies,
we find the SSC flow discretization gives accurate results with a controlled continuum extrapola-
tion. At weaker coupling g2 = 1 the non-perturbative β -function appears to make contact with the
perturbative expansion (however the 5-loop MS calculation is in a different scheme). At stronger
coupling g2 = 6 we see both O(a2) and O(a4) terms being necessary for continuum extrapolation
if including L/a = 12. The overall behavior is consistent with our published results [11] that the
continuum β -function increases out to g2 = 7, in quatitative difference with the Wilson results of
[14]. Our published work presents an RG argument for the validity of staggered fermions, refuting
claims repeated in [7] about the loss of universality in the staggered discretization. Systematic tests
of the analysis and its dependence on c and flow discretization are continuing.

4. Infinitesimal β -function

Since the gradient flow gives the renormalized coupling g2(t) at any flow time t, an infinites-
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Figure 6: Continuum extrapolations for N f = 2 sextet, making contact with perturbative results at weak
coupling and showing consistency with previous analysis at stronger coupling.

imal β -function t ·dg2/dt can be measured directly from lattice simulations, which can be extrap-
olated to infinite volume and the continuum in a controlled fashion. This is an alternative to the
finite-volume discrete step-function [g2(sL)−g2(L)]/ log(s2) with scale change s. This technique
can be applied to the ensembles previously generated for the discrete step-function, hence for a
variety of models. We show in Fig.7 an example for the N f = 12 theory. With simulations di-
rectly at zero fermion mass, finite-volume dependence of the L/a = 40,48,56,64 data is removed
as O(a4/L4) at each choice of reference flow time t where the infinitesimal derivative is measured,
approximated with a finite difference accurate to O(ε4). We repeat for a range of t values where the
finite-volume effect is under control. The following continuum extrapolation in a2/t gives an accu-
rate continuum limit in excellent agreement with the discrete step-function results shown in Fig.2.
This independent calculation further bolsters the case that the N f = 12 model is near-conformal
with a small but non-zero β -function. We have also calculated the infinitesimal β -function for the
N f = 10 fundamental rep model as shown in Fig.5.

We first presented a calculation of the infinitesimal β -function at Lattice 2017 [12] for the
N f = 2 sextet model as in Fig.8. We fitted a set of p-regime ensembles to remove finite-volume
dependence at finite mass, then took the chiral limit of both the β -function and a reference scale
t0 for each lattice spacing. The final step is a continuum extrapolation in a2/t0, giving a contin-
uum result at strong coupling matching the fully independent finite-step β -function measured on
zero-mass ensembles. The connection of the p-regime and the weak coupling regimes shows the
massless theory spontaneously breaks chiral symmetry at strong coupling, developing a mass gap
which prevents a conformal phase from emerging. The method was tested for N f = 2 in [13].
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Figure 7: An example of the N f = 12 infinitesimal β -function. (Left) Simulating directly at zero
fermion mass, finite-volume dependence of O(a4/L4) is removed at fixed g2 and flow time t on volumes
40,48,56,64, followed by continuum extrapolation of the infinite-volume results at fixed g2 with O(a2/t)
(right). The continuum result is in excellent agreement with the finite-step determination in Fig.2.
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