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this work, we demonstrate the abilities of our new noise subtraction methods with methods which
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1. Introduction

Physical quantities, represented as operators in Lattice QCD, tend to produce signals with a
large amount of noise. One way to combat this is through noise subtraction methods. We have
previously [1] developed and implemented several new types of noise subtraction methods. Due to
their large computational cost, approximations were made to avoid disconnected loop effects. In
this work, these effects are included using a dynamical configuration in order to test the effective-
ness of the methods discussed in [2] when disconnected loop effects are included.

2. Noise Subtraction Methods

The basis for noise subtraction methods involves using an important result of noise theory,
namely, that, if one defines a matrix X made from Z(N ≥ 3) noise vectors η(n) as

Xi j ≡
1
N

N

∑
n

η
(n)
i η

∗(n)
j . (2.1)

Then, if Q is the matrix representation of an operator, one can show that [2]

V [Tr(QXZ(N≥3))] =
1
N ∑

i 6= j
|qi j|2. (2.2)

In other words, the variance of Tr(QXZ(N≥3)) depends only on the off-diagonal elements of Q.
The foundation of noise subtraction techniques involves noticing that, for two matrices Q and

Q̃, such that Q̃ is traceless,

〈Tr(QX)〉=
〈

Tr
{
(Q− Q̃)X

}〉
(2.3)

and, from Eq. 2.2,

V
[
Tr

{
(Q− Q̃)XZ(N≥3)

}]
=

1
N ∑

i 6= j
(|qi j− q̃i j|2). (2.4)

In LQCD, trace terms appear as the expectation value of operators,

〈ψ̄Θψ〉=−Tr(ΘM−1). (2.5)

Through projecting the quark matrix onto the noise vectors η(n) as

Mx(n) = η
(n), (2.6)

and combining it with the result of Eq. 2.4, it can also be shown [2] that the for Z(4) noise, the
variance of such a trace depends only on the off-diagonal elements of M−1. This suggests that
if one constructs a suitable traceless inverse to the QCD matrix, M̃−1, such that its off-diagonal
elements are similar to M−1, then the variance of the operator Θ can be reduced by adding the
approximate inverse to the inverse QCD matrix.

The standard method for noise subtraction is perturbative subtraction (PS). Our new noise sub-
traction methods are referred to as eigenvalue subtraction (ES)[4], polynomial subtraction (POLY)[3],
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and Hermitian-forced eigenvalue subtraction (HFES)[5], each of which produced modest decreases
in the variance of several operators. The most promising of the methods we introduced, however,
involves a combination of these methods. These combination methods come about by combining
the techniques of HFES with POLY and PS, referred to as HFPS and HFPOLY, respectively. For
the HFPOLY method, a general trace Tr(ΘM−1) involving some operator Θ and QCD matrix M
for random noise vectors η(n) of size N in noise space can be shown [2] to be given by

Tr(ΘM−1) =
1
N

N

∑
n
(η(n)†

Θ[x(n)− x̃′(n)eig − (x̃(n)poly− x̃′(n)eigpoly)])+Tr(Θγ5M̃′−1
eig )

+Tr(ΘM̃′−1
poly−Θγ5M̃′−1

eigpoly)

(2.7)

where

x(n) = M−1
η
(n), (2.8)

x̃(n) ≡ M̃′−1
polyη

(n), (2.9)

x̃′(n)eig ≡ γ5M̃′−1
eig η

(n) = γ5

Q

∑
q

1
λ ′(q)

e′(q)R (e′(q)†R η
(n)), (2.10)

x̃′(n)eigpoly ≡ γ5M̃′−1
eigpolyη

(n) = γ5

Q

∑
q

1
ξ ′(q)

e′(q)R (e′(q)†R η
(n)). (2.11)

e′(q)R are the eigenmodes of M′ (M′ ≡ Mγ5), and λ ′(q) and ξ ′(q) are the eigenvalues of M̃′eig and
M̃′eigpoly, respectively.

The approximate QCD matrix inverses, M̃′eig, M̃poly, M̃′eigpoly, and M̃−1
pert are given by

M̃−1
pert ≡ I +κP+(κP)2 +(κP)3 +(κP)4 +(κP)5 +(κP)6, (2.12)

M̃−1
poly ≡ b0I +b1κP+b2(κP)2 +b3(κP)3 +b4(κP)4 +b5(κP)5 +b6(κP)6, (2.13)

M̃′−1
eig ≡ Ṽ ′RΛ̃

′−1Ṽ ′†R , (2.14)

M̃′−1
eigpoly ≡ Ṽ ′RΞ̃

′−1Ṽ ′†R , (2.15)

where P is the quark hopping matrix, κ is the hopping parameter, Ṽ ′ is a matrix whose columns
are the Q smallest right eigenvalues of M′, and Λ̃′−1 and Ξ̃′−1 are diagonal matrices that contain
along their diagonal the reciprocal eigenvalues 1/λ ′(q) and 1/ξ ′(q), respectively. For the POLY
and HFPOLY methods, the coefficients are found using the power basis method. In the case of
the HFPS method, the approximate matrix inverse M̃−1

poly is replaced with M̃−1
pert . A comprehensive

description of each of the methods can be found in Ref. [2].

3. Results

3.1 Quenched Configurations at κcrit

The dimensions of the quenched lattice were 243×32 and were run at β = 6.0 with a hopping
parameter of κ = 0.1570 ≈ κcrit . The standard error was averaged over 10 configurations. Plots
of the error bars versus the number of deflated eigenvalues are shown in Figure 1, Figure 2, and
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Figure 3 corresponding to a local vector, point-split vector, and scalar operators, respectively. The
methods compared are non-subtraction (NS), ES, PS, POLY, HFES, HFPS, and HFPOLY. In each
case, the methods HFPS and HFPOLY produce a significant reduction in the error bars over both
NS and PS.

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
10-4

NS
ES
HFES
PS
POLY
HFPS combo
HFPOLY combo

St
an

da
rd

 e
rr

or

Number of deflated eigenvectors

Figure 1: Error bars of operator as a function of deflated eigenvalues on the quenched configurations at κcrit

for the local vector: Im[ψ̄(x)γµ ψ(x)].
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Figure 2: Error bars of operator as a function of deflated eigenvalues on the quenched configurations at κcrit

for the point-split vector: κIm[ψ̄(x+aµ)(1+ γµ)U
†
µ ψ(x)]−κIm[ψ̄(x)(1− γµ)Uµ ψ(x+aµ)].

Comparisons between the methods were made by defining the relative efficiencies, RE, as,

RE ≡ (
1

δy2 −1)×100% (3.1)

where δy2 is the relative variance. The RE of POLY, HFES, HFPS, and HFPOLY both to NS
and to PS are shown in Table 1. For every operator, HFPOLY and HFPS produced significant
improvements over PS in reduction of the error bars.
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Figure 3: Error bars of operator as a function of deflated eigenvalues on the quenched configurations at κcrit

for the scalar: Re[ψ̄(x)ψ(x)].

Scalar Local Point-Split

vs. NS vs. PS vs. NS vs. PS vs. NS vs. PS

POLY 8.9% 2.8% 16.4% 0.1% 49.5% 1.1%
HFES 634% 593% 496% 413% 180% 89.2%
HFPS 972% 911% 1970% 1680% 1800% 1180%
HFPOLY 1350% 1270% 2070% 1770% 2200% 1470%

Table 1: Relative efficiencies for the quenched configurations at κcrit

3.2 Dynamical Configurations

The dynamical N f = 2+1+1 MILC configurations consisted of a 163×48 lattice with β = 5.8
and a pion mass of mπ = 306.9(5) MeV. Using 10 configurations, analysis of the pion correlator
produced a hopping parameter of κ = 0.1453. This corresponds to the quenched case with an
approximate hopping parameter κ ≈ 0.1567 [2]. Shown in Figure 4, Figure 5, and Figure 6 are
comparisons of the error bars of each of the three operators as a function of the deflated eigenvalues
for the different methods. Notice, once again, the significant improvement in RE for HFPS and
HFPOLY over PS alone, also shown in Table 2. Due to deflation, an even better reduction in the
variance is expected as the pion mass decreases closer to the physical point.

4. Conclusions

Using the eigenmodes of the Hermitian Wilson matrix in the HFPS and HFPOLY methods
resulted in a large variance reduction compared to the PS method alone near zero quark mass, an
improvement which is seen in both the quenched configurations at κcrit as well as the dynamical
configurations at κ = 0.1453. As pion mass decreases towards the physical point, we expect even
better reduction in the variance from deflation. There are still other areas of exploration including
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Figure 4: Error bars of operator as a function of deflated eigenvalues on the dynamical configurations at
κ = 0.1453 for the local vector: Im[ψ̄(x)γµ ψ(x)].
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Figure 5: Error bars of operator as a function of deflated eigenvalues on the dynamical configurations at
κ = 0.1453 for the point-split vector: κIm[ψ̄(x+aµ)(1+ γµ)U

†
µ ψ(x)]−κIm[ψ̄(x)(1− γµ)Uµ ψ(x+aµ)].

examining different LQCD operators, applying POLY to solving the linear systems rather than
simply in deflation, and considering a POLY expansion for the Hermitian system.
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Figure 6: Error bars of operator as a function of deflated eigenvalues on the dynamical configurations at
κ = 0.1453 for the scalar: Re[ψ̄(x)ψ(x)].

Scalar Local Point-Split

vs. NS vs. PS vs. NS vs. PS vs. NS vs. PS

POLY 22.8% 6.6% 35.0% -0.1% 93.4% 5.2%
HFES 134% 104% 120% 62.4% 60.0% -13.2%
HFPS 192% 153% 332% 220% 417% 181%
HFPOLY 260% 217% 436% 230% 505% 229%

Table 2: Relative efficiencies for the dynamical configurations
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