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We report on fits of the SU(3) N f = 8 LSD spectral data to chiral perturbation theory with a
dilatonic meson. These fits confirm that current simulations are in the “large-mass” regime, with
approximate hyperscaling as the leading mass dependence. We find that the leading-order ef-
fective field theory describes the data well. In particular, the effective field theory allows us to
understand the staggered taste splitting, explaining the pattern observed in the LSD data, which
looks different from QCD.
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1. Introduction

Numerical simulations of the SU(3) gauge theory with N f = 8 flavors of fundamental fermions
show that the spectrum of the theory behaves quite differently from the spectrum of a similar theory
with far fewer (light) flavors, such as QCD [1, 2] (see also Ref. [3]). The salient differences are
three-fold: (1) the 8-flavor theory contains a stable flavor-singlet 0++ state which, at the fermion
masses explored in the simulations, is light and approximately degenerate with the pseudo-scalar
Nambu–Goldstone (NG) bosons associated with chiral symmetry breaking (“pions”), (2) dimen-
sionless ratios of hadronic quantities are nearly independent of the fermion mass (over a range
of fermion masses differing by factors up to 7), and (3) a taste-breaking pattern that looks very
different from that in QCD (staggered fermions were used for the simulations of Refs. [1, 2]).

While the simulations indicate that the 8-flavor theory breaks chiral symmetry also in the chiral
limit, with the light 0++ state in the spectrum standard chiral perturbation theory (ChPT) clearly
cannot be used as a low-energy effective theory. Instead, it should be expanded to include the
physics of the light scalar state, and, if this is to be done systematically, a guiding principle that
leads to a power counting scheme is required. Such an effective theory was proposed based on the
assumption that the light scalar is an approximate NG boson for the breaking of scale invariance,
which is assumed to be small because of the proximity of the 8-flavor theory to the conformal
window. In Refs. [4, 5, 6, 7], it is assumed that the difference of the number of flavors, N f , with
the critical value N∗f (Nc) at which theory enters the conformal phase in which the theory develops
an infra-red fixed point (IRFP) can be used as an expansion parameter. More precisely, the small
parameter is n f −n∗f , with n f = limNc→∞ N f /Nc and n∗f = limNc→∞ N∗f (Nc)/Nc, where the Veneziano
limit Nc, N f → ∞ with fixed ratio is taken. As explained in detail in Refs. [4, 5], this assumption
allows us to augment standard ChPT with an effective field describing the light scalar, which we
will refer to as the dilatonic meson, or dilaton.1 We will refer to this extension of ChPT as dChPT.

Here, we test tree-level dChPT on the published data of Ref. [2], as a natural first step. (With
the currently attained numerical precision, NLO effects are unlikely to be quantitatively accessible.)
Some tree-level tests have been carried out in Ref. [8]; the results we report below are in agreement
with those reported in Ref. [8]. A new result is our exploration of taste-breaking effects, for which
we refer to Sec. 3 below. We emphasize that all results reported here are based on fits of the data
as published in Ref. [2]. No correlations have been taken into account, and all results should be
considered preliminary. Work on a more complete analysis of the numerical data is in progress [9].

2. dChPT at tree level

The leading-order dChPT lagrangian is [4]

L =
1
4

f̂ 2
π e2τ tr(∂µΣ

†
∂µΣ)+

1
2

f̂ 2
τ e2τ

∂µτ∂µτ− 1
2

f̂ 2
π B̂πe(3−γ∗)τm tr(Σ+Σ

†)+ f̂ 2
τ B̂τe4τc1

(
τ− 1

4

)
.

(2.1)
Here τ is the field describing the dilatonic meson, and Σ = exp(2iπ/ f̂π) is the usual field describing
the pions; f̂π , f̂τ , B̂π , and B̂τ are low-energy constants, and γ∗ is the value of the mass-anomalous

1For more on the assumptions underlying our framework, see Ref. [7].
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dimension at the nearby IRFP [4, 6]. The small parameters are the fermion mass m > 0, and
c1 ∝ n f − n∗f . At fixed n f , the dilatonic meson τ decouples in the m → 0 limit, in which the
pions are described by ordinary ChPT (for 8 light flavors). For larger values of m, there exists
a “large-mass” regime which exhibits approximate hyper-scaling; dChPT is applicable as long as
c1 logm� 1 [7]. The τ field has been shifted such that v≡ 〈τ〉= 0 for m = 0.

First, the classical potential is minimized by setting Σ = 1, and solving

m
c1M̂

= v(m)e(1+γ∗)v(m) , M̂ =
4 f̂ 2

τ B̂τ

f̂ 2
π B̂πN f (3− γ∗)

, (2.2)

for v(m). Note that this is an O(1) relation, because both m and c1 are small, and assumed to be of
the same order. Some of the tree-level predictions following from Eqs. (2.1) and (2.2) are

Fπ,τ = f̂π,τev(m) , (2.3)

M2
π = 2B̂πme(1−γ∗)v(m) ,

M2
τ = 4c1B̂τe2v(m) (1+(1+ γ∗)v(m)) .

These results can be combined into the relations

M2
πFγ∗−1

π = Cm , (2.4)
m
Fπ

= D2
M2

π

F2
π

exp
(

D1
M2

π

F2
π

)
,

f̂π = (CD2)
1/γ∗ ,

v(m) =
D1

γ∗

M2
π

F2
π

,

where C and D1,2 are combinations of low-energy constants, including γ∗.
Assuming that the lattice spacing a does not depend on m, we can fit the first two relations (the

second relation is in terms of dimensionless ratios, so the assumption is not needed in that case).
Preliminary results are, in units of the lattice spacing2

γ∗ = 0.936(19) , C = 1.93(6) , (2.5)

D1 = 0.22(3) , logD2 =−8.8(5) .

From the last line of Eq. (2.4) we then find that a f̂π ∼ 0.0006. This is much smaller than the
computed values of aFπ , which range from 0.021 to 0.053 for fermion masses between am =

0.00125 and am = 0.00889. This large difference is explained by the factor ev(m) in the first line
of Eq. (2.3). These factors thus range between about 35 and 90, indicating that the numerical
simulations of Refs. [1, 2] are in the “large-mass” regime [7], where the factor e(1+γ∗)v(m) dominates
over the factor v(m) in Eq. (2.2). In this regime, the theory exhibits approximate hyperscaling.
Figure 1 shows that results for the ratios of masses and Fπ obtained by Ref. [2] are consistent with
approximate hyperscaling as predicted by dChPT. Needless to say, this behavior is quite different
from that in QCD. Since B̂π is by construction independent of m, we can test the independence of

2Early results indicate that proper correlated fits lead to results consistent with Eq. (2.5) with a good fit quality [9].
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Figure 1: Ratios of hadron masses over Fπ , as a function of the fermion mass in units of Fπ , from Ref. [2].
(Figure courtesy of E. Neil.)

the lattice spacing by computing values for the low-energy constant aB̂π in lattice units. From the
fourth line of Eq. (2.4) one obtains v(m), and then from the second line of Eq. (2.3) one computes
aB̂π . Doing this, we find that this quantity is constant to within 3% over the range of fermion
masses considered in the numerical simulations, which is well within the errors on the computed
values at each am. This validates our assumption that the lattice spacing does not depend on m.

3. Taste breaking

The simulations of Refs. [1, 2] were performed with staggered fermions, and Ref. [2] reported,
in addition to the “exact” NG pion mass Mπ also the values for the “taste” pions Mi5 and Mi j.
Mass-squared differences are shown in Fig. 2. Both taste splittings show a strong dependence on
the fermion mass at fixed lattice spacing. This is very much unlike QCD, where, if one plots the
differences between the squares of the masses of the different tastes, one would find virtually no
dependence on the fermion mass, i.e., horizontal lines (see, for example, Fig. 3 in Ref. [10]).

An important question is whether the dChPT framework can explain this salient difference,
which has also been observed in the SU(3) theory with two sextet fermions [11]. In staggered QCD,
taste splittings can be understood in terms of staggered ChPT [12, 13] (for reviews, see Refs. [10,
14]). In the Symanzik effective action, the leading-order taste-breaking effects are encapsulated by
four-fermion operators of the form [12]

a2(ψΓψ)(ψΓψ) , (3.1)

where Γ is a gamma-matrix acting on the taste index of ψ . The operator (ψΓψ)(ψΓψ) has an

3
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Figure 2: Taste splittings (aMi j)
2− (aMπ)

2 (black points; red curve), and (aMi5)
2− (aMπ)

2 (blue points;
magenta curve), as a function of am. Data from Ref. [2].

anomalous dimension γΓ, and thus transforms under a scale transformation with parameter λ as

(ψΓψ)(ψΓψ)→ λ
6−γΓ(ψΓψ)(ψΓψ) , (3.2)

which leads us to introduce a spurion field for a2 transforming as a2→ λ−2+γΓa2. It follows that
the operator (3.1) is represented in dChPT as

cΓa2 f̂ 6
π e(6−γΓ)τ tr(ΣΓΣ

†
Γ) , (3.3)

where now Γ acts on the taste index of Σ [12, 13, 10], and cΓ is a dimensionless low-energy
constant.3 Since there is more than one possible choice for Γ, we find from Eq. (3.3) that

(aMΓ)
2− (aMπ)

2 = (a f̂π)
4
∑
Γ′

cΓΓ′e(4−γ
Γ′ )v(m) . (3.4)

Assuming, as is the case for QCD, that one operator dominates leads to the simpler expression

(aMΓ)
2− (aMπ)

2 = AΓe(4−γΓ)v(m) , (3.5)

and this is the expression we fit to the data, yielding the red and magenta curves in Fig. 2. The
values of the fit parameters are

Ai5 = 2.0×10−6 , γi5 = 1.9 , (3.6)

Ai j = 2.9×10−6 , γi j = 1.9 .

3In staggered ChPT both single- and double-trace operators appear, but only single-trace operators contribute to the
taste splittings at leading order.
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As these fits are preliminary, we did not yet estimate errors. We note, however, that the fits yield
γi5 ' γi j ≈ 2γ∗. A more complete analysis is in preparation. However, it is clear that dChPT has a
feature not present in standard ChPT: the appearance of powers of ev(m) in tree-level results. These
factors explain why the taste splittings are strongly dependent on the fermion mass to leading order
in dChPT at a fixed lattice spacing, in the large-mass regime. This is in sharp contrast with what
happens in QCD with staggered fermions, where taste splittings are independent of the fermion
mass to leading order (and, to a very good precision, in simulations). The different slopes seen in
Fig. 2 are explained by the different values of Ai5 and Ai j found in the fits.

4. Concluding remarks

In this preliminary investigation of the LSD data for the 8-flavor SU(3) theory using tree-
level dChPT, we find that, at least semi-quantitatively, lowest-order dChPT describes the data quite
well. In particular, dChPT appears to be able to describe the taste-splitting pattern in staggered
discretizations of this theory, which shows a very different pattern from that of staggered lattice
QCD. We take this as a sign that the description of the low-energy behavior of this theory using
dChPT is on the right track.

A complete leading-order analysis of the data is in progress [9]. While this is a natural starting
point, of course NLO effects should eventually be considered as well.4

From our analysis, we can conclude that if indeed dChPT is the correct low-energy effective
theory, the simulations of Refs. [1, 2, 3] are in the “large-mass” regime [7], in which the data show
approximate hyperscaling. The intuitive understanding is that the fermion mass m is large enough
to dominate the breaking of scale invariance. If this is the case, that would make it more difficult
to settle the question whether indeed (as assumed here) the 8-flavor SU(3) theory is just outside, or
already inside, the conformal window.

Given that it is expensive to enlarge the (linear) volume L (while keeping the lattice spacing
fixed), another way of avoiding the large-mass regime would be to make the fermion mass m
smaller. This would possibly drive the pions in the theory into the ε-regime [8]. This regime is also
accessible to dChPT [19]. However, values of Fπ would be much closer to f̂π , which is predicted
by dChPT to be very small, and it might not be easy to satisfy the requirement that FπL & 1.
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