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We propose a renormalization scheme that can be simply implemented on the lattice. It consists of
the temporal moments of two-point and three-point functions calculated with finite valence quark
mass. The scheme is confirmed to yield a consistent result with another renormalization scheme
in the continuum limit for the bilinear operators. We apply a similar renormalization scheme for
the non-perturbative renormalization of four-fermion operators appearing in the weak effective
Hamiltonian.
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1. Introduction

B→ K(∗)l+l− decay is one of the flavor-changing neutral current processes. Its decay ampli-
tude in the Standard Model is suppressed by the GIM mechanism, and is sensitive to new physics.
In the theoretical analysis, however, charmonium long-distance effects make it difficult to accu-
rately predict the Standard Model contributions. Lattice QCD may be able to treat such effects
from the first-principles (for instance, a test of factorization is attempted in [1]).

In the study of weak decays on the lattice, renormalization is necessary. Since most of the
lattice operators have logarithmic or power divergences toward the continuum limit, we should
remove the divergences and give the proper scale dependences. Even when the operator does not
have a divergence such as the case of vector current, we need to take the discretized effect into
account. We can obtain the correct physical quantity only after the renormalization.

Renormalization can be performed by applying a matching directly or indirectly. For the
quantities to be matched we require the following properties: typical length scale is short enough
to use perturbation theory. At the same time the quantity has to allow precise lattice calculation.
Then, we match the lattice calculation with the corresponding perturbative (usually in the MS
scheme) calculation. For instance, the coordinate space correlators G(x) = 〈0|T J(x)J(0)|0〉 at a
short (but nonzero) distance x are used in the X-space method. Another example is the RI/MOM
scheme, where the vertices with external free quark lines are matched to the corresponding MS
calculations.

In the present work, we propose a new matching procedure to determine the renormalization
factors for lattice operators. It is based on the temporal moments of charmonium correlators. We
match a temporal moment with the MS counterpart or with tree level amplitude. A similar method
for the vector current has been studied in the literature [2, 3]. We apply the method for pseudoscalar
operators and verify that our method works well. Then we extend the method to four-fermion
operators to describe weak decays.

2. Renormalization of bilinear operators

In the continuum theory, moments Mk of a charmonium correlator are defined by a q2 deriva-
tive of the vacuum polarization function Π(q2) at q2 = 0:

q2
Π(q2) =

∫
d4x eiqx〈0|T j5(x) j5(0)|0〉, (2.1)

Mk =
∂ kΠ(q2)

∂ (q2)k

∣∣∣∣
q2=0

, (2.2)

where j5(x) = iψ̄c(x)γ5ψc(x) is the charmonium pseudoscalar density operator. From dimensional
analysis, the moments do not contain any extra divergence due to x→ 0 for k > 1. We use these
finite quantities to determine the renormalization factor ZMS/lat(µ,a) for the lattice operator, i.e.
we impose a matching condition for the moments at a renormalization scale µ:

∂ k

∂ (q2)k Π
MS(µ;q2)

∣∣∣∣
q2=0

=
(

ZMS/lat(µ,a)
)2 ∂ k

∂ (q2)k Π
lat(a;q2)

∣∣∣∣
q2=0

, (2.3)
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β a−1 [GeV] L3×T (×L5) #meas amud ams amc

4.17 2.453(4) 323×64(×12) 100 0.007 0.040 0.44037
4.35 3.610(9) 483×96(×8) 50 0.0042 0.0250 0.27287
4.47 4.496(9) 643×128(×8) 50 0.0030 0.015 0.210476

Table 1: Ensembles for our simulations. mud and ms are masses of sea quarks and mc is a valence quark
mass for each ensemble.

where ΠMS(µ;q2) and Πlat(a;q2) are vacuum polarization functions in the MS scheme and on the
lattice, respectively. The perturbative expansion of the moments are known to O(α3

s ) in the MS
scheme [4].

The q2-derivative on the lattice that appears on r.h.s. of Eq. (2.3) is equivalent to a temporal
moment of the charmonium correlation function. The charmonium correlation function is written
on the lattice as

G(t) = a6
∑
~x
〈 j5(t,~x) j5(0,0)〉. (2.4)

Then, the temporal moment of the correlator is given as

Gn = ∑
t

( t
a

)n
G(t) =

∂ k

∂ (q2)k Π
lat(a;q2)

∣∣∣∣
q2=0

, (2.5)

where n is related to k in (2.3) as n = 2k+2. On the lattice, the time t/a runs from −T/2a+1 to
T/2a, and correlators are even functions of time. Typical length scale is given by an inverse of the
charm quark mass m−1

c , which is short enough to describe perturbatively. The temporal moment
on the lattice has been shown to provide precise determination of charm quark mass and strong
coupling constant [5, 6, 7], which indicate that it may be used for the purpose of renormalization
[2, 3]. In practice, we divide the moments by their one-loop calculation (or the vacuum polarization
function at O(α0

s )) and multiply the charmonium mass to reduce discretized errors as in [5, 6, 7].
We use ensembles with Nf = 2+1 Möbius domain-wall fermions. The parameters of our lat-

tice simulations are shown in Table 1. We also input the strong coupling constant αs(2 GeV) =

0.3022 and charm quark mass m̄c(2 GeV) = 1.09 GeV, which are obtained by solving renormal-
ization group equations from the PDG average αs(Mz) = 0.1181 and m̄c(m̄c) = 1.27 GeV [8].

We check the consistency with another method, taking the renormalization constant from the
X-space method as a reference [9]. We calculate the ratio of our results at a renormalization scale
µ = 2 GeV to the reference:

R(a) = Z(moment)
P (µ = 2 GeV,a)/Z(X-space)

P (µ = 2 GeV,a), (2.6)

where Z(moment)
P is the renomalization constant calculated by our method and Z(X-space)

P is the renor-
malization constant obtained by the X-space method. Fig. 1 shows the ratio. After taking the
continuum limit, they are consistent with each other, i.e. R(a) = 1, up to truncation errors of
O(α4

s ) and discretization error of O(a2).
Temporal moments can also be used as an intermediate renormalization scheme. The renor-

malization constant Z(int) is defined through a matching with the moments at the tree level or
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Figure 1: Ratio of renormalization contstants for the pseudoscalar density operator with our method to
ones with X-space method defined in Eq. (2.6). The thick band represents an estimate of unknown O(α4

s )

correction given by 1±α4
s and the thin band shows 1±2α4

s .
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Figure 2: Renormalization constants in the intermediate scheme. Left and Right show the constants for
pseudoscalar and vector channels, respectively.

O(α0
s ):

∂ k

∂ (q2)k Π
tree(q2)

∣∣∣∣
q2=0

=
(

Z(int)(a)
)2 ∂ k

∂ (q2)k Π
lat(a;q2)

∣∣∣∣
q2=0

. (2.7)

The results are shown in Fig. 2. We show only the case of n= 4 (or k = 1) since it is the lowest order
moment, which is more dominated by short-distance physics and suitable for renormalization. This
scheme is applicable independently of the channel.
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Figure 3: Two correlators to calculate temporal moments.

3. Extension to four-fermion operators

We extend our method to four-fermion operators, appearing in the effective weak Hamiltonian.
In particular, we focus on the operators O1 and O2 that represent the charmonium contribution in
B→ K(∗) l+l− decays:

Heff =
GF√

2
V ∗csVcb (C1O1 +C2O2) , (3.1)

O1 =
(
siγµP−c j

)(
c jγµP−bi

)
, (3.2)

O2 =
(
siγµP−ci

)(
c jγµP−b j

)
, (3.3)

where GF , Vcs,cb, C1,2 and P− = (1− γ5)/2 are the Fermi constant, elements of the CKM matrix,
a Wilson coefficient of O1,2 and a left-handed projection operator, respectively. i and j are color
indices.

The operators O1,2 mix through the renormalization, and the renormalization constants form a
2×2 matrix. The relation between the renormalized operators OR

i and the bare lattice operators Oi

is (
OR

1
OR

2

)
=

(
Z11 Z12

Z21 Z22

)(
O1

O2

)
. (3.4)

Here we do not have to consider a mixing with lower dimensional operators since they do not
create cc̄ states without involving disconnected diagrams which we neglect in this work. To deter-
mine the renormalization constants, we prepare two external states for each operator and calculate
correlation functions with them placed at t1 and t2 as depicted in Fig. 3:

Ai(t1, t2) = a12
∑
~x1,~x2

〈(
b̄γ5s

)
(t1,~x1)Oi(0,~0)(c̄γ5c)(t2,~x2)

〉
, (3.5)

Bi(t1, t2) = a12
∑
~x1,~x2

〈(
b̄γ5c

)
(t1,~x1)Oi(0,~0)(c̄γ5s)(t2,~x2)

〉
. (3.6)
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The renormalization constants are obtained by matching the double temporal moments of the
form

A(n1,n2)
i = (amc)

2
∑
t1,t2

( t1
a

)n1 ( t2
a

)n2
Ai(t1, t2), (3.7)

B(n1,n2)
i = (amc)

2
∑
t1,t2

( t1
a

)n1 ( t2
a

)n2
Bi(t1, t2). (3.8)

The factor (amc)
2 cancels the renormalization factor of the pseudoscalar density operator intro-

duced for the external source. The orders of the moments n1 and n2 must be odd, otherwise the
moments vanish at the tree level. To avoid any extra divergence, n1 and n2 must be larger than 2.
We therefore take n1 = n2 = 3, which provides the shortest distance correlation.

We impose a renormalization condition on the moments:

A(3,3)
i

∣∣∣
renorm.

= A(3,3)
i

∣∣∣
tree

, (3.9)

B(3,3)
i

∣∣∣
renorm.

= B(3,3)
i

∣∣∣
tree

, (3.10)

where the l.h.s. is the renormalized quantities and the r.h.s. is the moments at the tree level. We
set all valence quark masses mb = mc = ms to mc because the renormalization constants should be
determined by the UV behavior and can be made independent of each quark mass. The bulk of
those moments is given in the short-distance regime, and we control the distance scale by setting
the heavy valence quark mass. We can simplify (3.9) and (3.10) using Fierz identities for O1.
Namely,the Fierz transformations of O1 gives〈(

bγ5s
)(

siγµP−c j
)(

c jγµP−bi
)
(cγ5c)

〉
=
〈(

bγ5s
)(

siγµP−bi
)(

c jγµP−c j
)
(cγ5c)

〉
, (3.11)

which is equal to 〈(
bγ5c

)
O2 (cγ5s)

〉
=
〈(

bγ5c
)(

c jγµP−b j
)(

siγµP−ci
)
(cγ5s)

〉
(3.12)

when the valence quark masses are degenerate. Note that we neglect the disconnected diagrams.
We then obtain two identities:

A(n1,n2)
1 = B(n1,n2)

2 , A(n1,n2)
2 = B(n1,n2)

1 , (3.13)

and Z11 = Z22, Z12 = Z21. As a consequence, it is sufficient to solve a linear equation

Z11A(3,3)
1 +Z12A(3,3)

2 = A(3,3)
1

∣∣∣
tree

, (3.14)

Z11A(3,3)
2 +Z12A(3,3)

1 = A(3,3)
2

∣∣∣
tree

, (3.15)

with A(3,3)
1 and A(3,3)

2 as inputs.
The numerical results are shown in Table 2. The anomalous dimension can also be calculated

by taking a difference between two nearby lattice spacings

γi j =−a
∂

∂a
logZi j =−Z−1

ik a
∂

∂a
Zk j. (3.16)

We find that the signs are consistent with one-loop results.
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β a−1 [GeV] Z11 Z12

4.17 2.453(4) 0.754(8) 0.072(2)
4.35 3.610(9) 0.669(11) 0.093(4)
4.47 4.496(9) 0.645(15) 0.098(4)

Table 2: Results from our method. The errors of renormalization constants include only statistical ones.

4. Discussions

We propose a renormalization scheme based on the charmonium moments. Our method re-
quires no gauge fixing, unlike the RI/MOM scheme. We confirm that the scheme yields a consistent
result with the X-space scheme up to truncation and discretization errors for a pseudoscalar density
operator. We extend the method to the four-fermion operators.
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