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1. Introduction

The B — D™)¢v semileptonic decays are promising probes of new physics. However, there has
been a long-standing tension in the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V, | with
its alternative determination from inclusive decays [1]. Phenomenological analyses [2, 3, 4, 5, 6, 7]
of recent Belle data of the B— D*/v differential decay rate [8, 9] are deepening our understanding
of the systematics of the |V,,| determination. An unambiguous resolution of the |V,| tension,
however, will require a first-principle calculation of the relevant form factors by means of lattice
QCD. The B— D*¢v form factors at non-zero recoils are of particular importance, and are being
calculated by us and other collaborations [10, 11].

In this article, we update our results for the B— D*)¢v form factors. After our previous
report [12], the calculation has been extended to a larger cutoff ! ~4.5 GeV and a smaller pion
mass My ~230 MeV. A notable feature of our simulations is the use of relativistic quark formulation
with good chiral symmetry for all the relevant flavors. This enables us to straightforwardly study
interesting B meson decays including B — ¢v [13] and inclusive decay [14]. Our studies of B —
nlv [15], B—D**¢v [16] and B— K/¢¢ [17] are also reported in these proceedings.

2. Calculation of form factors

We generate gauge ensembles of 2+1 flavor lattice QCD at cutoffs of 2.5-4.5 GeV. Chi-
ral symmetry is preserved to good accuracy by employing the Mobius domain-wall quark ac-
tion [18, 19]. This simplifies the renormalization of the relevant matrix elements, which often
suffers from large discretization errors. We simulate a strange quark mass mi; close to its physical
value, whereas the degenerate up and down quark mass m,,; corresponds to pion masses as low as
My ~230 MeV. The spatial lattice size L is chosen to satisfy a condition ML =4 to control finite
volume effects. The statistics are 5,000 Molecular Dynamics time at each simulation point. These
simulation parameters are listed in Table 1.

The B— D) matrix elements are parametrized by six form factors in total,

MsMp  (D(p)|VulB(p)) = (v-+V)uhe (W) + (v =) uh—(w), @.1)
MMy (D*(&,p)[VulB(P)) = Euvpo €VVPV hy (w), (2.2)

\/MBMDfl<D*(£,p’)\Au]B(p)> = —i(w+1) gy ha, (W) +i(€V) vy hay(w) +i(€7v) vy hay (W), (2.3)

Table 1: Simulation parameters. Quark masses are bare value in lattice units.
lattice parameters My my Mz[MeV] Mg[MeV]
B=4.17, a='=2.453(4), 323x64x12 | 0.0190 0.0400 499(1) 618(1)
0.0120  0.0400 399(1) 577(1)
0.0070  0.0400  309(1) 547(1)
B=4.17, 48°x96x 12 0.0035 0.0400 226(1) 525(1)
B=4.35, a=1=3.610(9), 48°x96x8 | 0.0120 0.0250 501(2) 620(2)
0.0080 0.0250 408(2) 582(2)
0.0042 0.0250 300(1) 547(2)
B=4.47, a=1=4.496(9), 64°x128x8 | 0.0030 0.0150 284(1) 486(1)
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where w = v/ is the recoil parameter defined by four velocities v=p/Mp and v'=p' /M., and €
is a polarization vector of D*, which satisfies p’e =0.

We employ the Mobius domain-wall action also for charm and bottom quarks to calculate B —
D* three-point functions. The charm quark mass m, is set to its physical value determined from the
spin averaged mass (My, +3M; py)/4, whereas we use the bottom masses m, =1.25m,,1.25*m,, ...
under a condition m;, <0.7a~" to suppress discretization effects. The B— D) matrix elements can
be extracted from the three-point functions, provided that they are dominated by their ground state
contribution as

Z5 () Zs(p)
At A =00 4E ) (P/)EB (p)

o2 (ar, A p,p) (DY) ()| Or|B(p))eFote PONTERDI (2.4
where Or =V, or Ay, and the argument € is suppressed for Zp- and |D*(p’)). We apply the
Gaussian smearing to the interpolating field Op (P =B, D, D*) to enhance its overlap to the ground
state Zp(p) = (P(p)|0}). The B meson is at rest (p=0), and the w dependence of the form factors
is studied by varying the three momentum of D*) as |p’|*=0, 1,2,3,4 in units of (27/L)>.

For precise determination of the form factors, we construct ratios of the correlation functions,
in which unnecessary overlap factors and exponential damping factors cancel [20]. The statistical
fluctuation is also expected to partly cancel. For instance, the normalizations, s (1) and A4, (1),
and a ratio Ry (w) =hy (w)/ha, (w) can be directly extracted from the ratios

) ()
D) G (A A50,0)C) B (Ar,AF0,0) X
R (At,Ar") = BB 1.0.0)CcPYDPY 10.0) AAl—e ]h+<Al)(1)] , (2.5)
CV4(Ak) (At7At s Uy )CV4(Ak) (At,At U, ) N

RUT (At,A1"30,p') (26)

T OB (ALACO0.D ) s T4w ha(w)

where p’| represents the D* momentum satisfying ve =0. We refer the readers to Refs. [12, 21] for
ratios to determine other form factors.

A salient feature of this analysis is that R T

S
the form factors in Egs. (2.1)—(2.3) can be g Arar=t ¢ % %
calculated without finite renormalization of the 1 MR

local lattice operator Or=V),,A,, in Eq. (2.4). =

The relevant renormalization factors cancel in 3

the correlator ratios with the relativistic heavy é:{

quarks with chiral symmetry. This is an ad-

vantage toward a precision calculation of the

form factors, because we observe large dis- i “"1 ~36 G“’"; 1“4“*‘3(?0 Me‘( "= 1‘~25‘ e '1?' - Ip’!=? 1
cretization effects to the wave-function renor- 0 10 2 30 40
malization factor [13]. Figure 1: Double ratio (2.5) as a function of the tem-

poral location At of A,. We plot data at B =4.35,
myuq =0.0042 and my, =1.25 m.. Symbols with different
shapes show data with different values of Az + At’. The
shaded band shows a constant fit to estimate |, (1)]2.

The choice of the source-sink separation
At + At' in Eq. (2.4) is also crucial for the pre-
cision study of heavy hadrons [22]. Except for
the on-going simulation at the largest ' and
smallest M, we repeat our measurement for four different values of A7+ At’ in a range 0.7 —2.2 fm.
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Figure 1, which shows the double ratio RfD* (At,At"), demonstrates that, towards larger separation,
the three-point function has less excited state contamination, but its statistical noise rapidly grows.
With the four values of Az + Ar’, we can safely identify the plateau corresponding to the ground
state dominance. The statistical accuracy is typically 1 -2% for h, hs, and hy. Other form fac-
tors are less accurate, because i) h— and hy, are close to zero due to heavy quark symmetry, and
ii) we do not have matrix element, which is exclusively sensitive to /4, or hy,, partly due to our
kinematical setup with the B meson at rest.

3. Continuum and chiral extrapolation

In this preliminary report, we extrapolate the form factors to the continuum limit and physical
quark masses by using the following simple form based on the next-to-leading order (NLO) heavy
meson chiral perturbation theory (HMChPT) [23, 24]

c
hx = ¢+ Fog(Mn, f,Ay.8,Ac) +cp(w—1)+ m—b —4—ch,2[ —i—cme7Y +cqd® +dy(w— 1)2’(3.1)
. .

where M%S =2M2% — M2 ~2my is used to describe the (presumably small) m; dependence. The chiral
log of, for instance, A4, is given as

g2

T 32
We refer the readers to Refs. [23, 24] for the exact form of the loop integral function F=A2 In[M2/ Afc] +
O(A?). The decay constant in the chiral limit f and the D* — D mass splitting A, are fixed to the
experimental value of the pion decay constant f; and Mp+—Mp, respectively. The renormalization

Fiog(anfanvgyAc) F‘(MTHAC?AX) (32)

scale of HMChPT is set to Ay =47 f;. These choices only modify the higher order chiral correc-
tions. The coupling g is set to the value 0.53(8) quoted in Ref. [25], which covers the previous
estimates of the D*Dm, B*Br couplings and their static limit. We note that, in this preliminary
report, the quoted error is statistical only.

Figure 2 shows B— D*{v form factors at simulated points and those extrapolated to the con-
tinuum limit and physical quark masses. Our result for A4, (1) is in reasonable agreement with the
previous estimate by Fermilab/MILC [25] and HPQCD [26]. We observe a mild dependence of the
form factors on a~! and quark masses, and the w dependence does not show any strong curvature
in our simulation region near w=1. As a result, many of fit parameters in Eq. (3.1) turned out to
be consistent with zero. Only c, c,, and ¢, for i, hy, and hy have a statistical error less than 50 %.
Since the parameter dependences are described reasonably well by a constant or linear term, this
continuum and chiral extrapolation may not suffer from large systematic uncertainties, which are
under investigation.

4. Implication to |V,,| determination

In the limit of my =0, the B— D*{v differential decay rate is described by &4, (w) and two
ratios Ry (w) (defined above) and Ry (w) = (rha, + ha,)/ha, (r=Mp-/Mp) as

AU G:Vp* | 1—2wr+12 w—1 w—1 2
o GEIVarl” 1 T {1+ R](w)2}+{1+1_r(1—R2(w))}]hAl(w).(4.1)

dw 4373

w1
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Figure 2: Form factors of the B— D*{v decay as a function of w. Symbols show data at simulation points.
Those extrapolated to the continuum limit and physical quark masses are plotted by the green bands. The
red, blue, black symbols are obtained at a1=4.5,3.6 and 2.5 GeV, whereas open, pale shaded, filled, dark
shaded symbols are at M ~ 500, 400, 300 and 230 MeV, respectively. Symbols with different shapes show
data with different values of m;. For hy, (1), we also plot the previous estimates [25, 26].

The conventional determination of |V, | employs the Caprini-Lellouch-Neubert (CLN) parametriza-
tion [27], in which hy,, R; and R; are expanded in terms of a small kinematical parameter and
some of expansion coefficients are constrained by heavy quark effective theory (HQET) supple-
mented by the QCD sum rule inputs. Recent Belle data with the full kinematical distribution, on
the other hand, enables an analysis with the Boyd-Grinstein-Lebed (BGL) parametrization without
such HQET constraints and hence involving more free parameters.

It was reported a few years ago that i) model independent fit of the Belle tagged data [8] with
the BGL parametrization yielded |V,;| consistent with the inclusive determination [3, 4], and that ii)
there was a clear difference in R; between the BGL and CLN fits [6]. At last year’s conference, we
reported that our lattice data favor Ry from the CLN fit. This is further confirmed by the additional
data at the largest ¢! and smallest M, as shown in the left panel of Fig. 3. Meanwhile, the BGL fit
has been updated by including the Belle untagged data [9], and discrepancy from the CLN fit and
lattice QCD has been resolved [7].

On the other hand, there has been no large difference in R, between the BGL and CLN fits
as shown in the right panel of Fig. 3. Our lattice data are consistent with these phenomenological
estimates within relatively large uncertainty coming from /4,4, and h4,. We note that this uncertainty
is not problematic in predicting the differential decay rate (4.1), because the contribution of R;
is suppressed by a factor w — 1 in our simulation region near w=1. The left panel of Fig. 4
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Figure 3: Form factor ratios R; (left panel) and R, (right panel) as a function of w. The symbols show our
data at simulation points. The pale and dark shaded green bands show the results of the recent BGL fits with
the standard and strong unitarity bounds [7], whereas the purple band is from the CLN fit [6]. We also plot
the NLO HQET prediction by the dot-dashed line.

demonstrates that we can estimate dI"/dw with an accuracy comparable to experiments, and also
shows a reasonable agreement between our and experimental data.

A ratio hy, / f+, where f is the vector form factor for B— D/v, is also an important quantity,
since the CLN parametrization of hy, is derived from this ratio in NLO HQET and a dispersive
parametrization of f [27]. The right panel of Fig. 4 shows a reasonable agreement in the w depen-
dence between HQET and lattice QCD. While there is a ~ 10 % difference in the normalization,
this does not necessarily lead to the |V,;| tension, since /4, (1) is absorbed into the overall factor of
dI"/dw, which is treated as a fit parameter in the |V, | determination.

5. Summary

In this article, we report on our studies of the B— D*)/v decays. The relevant form factors
are precisely determined by simulating multiple values of the source-sink separation. While the
systematics of the continuum and chiral extrapolation is under investigation, it is expected to be
reasonably controllable due to the mild parametric dependence of the form factors.

] ---- HQET
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3
S |
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Figure 4: Left panel: B— D*{v differential decay rate dI"/dw as a function of w. Symbols are estimated
from our data at simulation points, whereas the orange band shows Belle data [8]. We assume |V,;| from
B— D*{v [1] to estimate dT"/dw. Right panel: ha, /f+ as a function of w. Our lattice result and the NLO
HQET prediction are plotted by the green and black bands,respectively.
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Recently, it is argued that the constraint in the CLN parametrization is responsible for the
|Ves| tension. Except the normalization of 44, /f,, our lattice data of hy4,/f+, Ry and R, show a
reasonable agreement with the CLN fit and NLO HQET. A more detailed analysis, such as the CLN
and BGL fits both to lattice and experimental data, is needed towards an unambiguous resolution
of the |V,;| tension.
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