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1. Introduction

CP violation is one of the most important topics in particle physics, and a consistency check of
the measure of the CP violation between its experimental value and theoretical prediction for vari-
ous processes is one of the best approaches to find new physics beyond the standard model. Among
these processes, the process of a kaon decaying to two pions is one of the most sensitive. The quan-
tity, Re(ε ′/ε), which serves as a measure of CP violation, has been measured experimentally[1]
with less than 10 percent error, while its standard model value remains hard to calculate, due to the
non-perturbative nature of QCD.

Lattice calculation allows us to numerically calculate Re(ε ′/ε) from first principles. In 2015
we published our first result[2] for Re(ε ′/ε) based on 216 configurations, which is 2σ different
from the experimental value. One important sub-problem in this calculation is ππ scattering, since
the ππ interactions in the k→ ππ final states are important. Lots of groups have done ππ scattering
calculation on the lattice before, but our calculation is the first to be performed with physical
pion masses and including disconnected diagrams. Our 2015 calculated value, 23.8(4.9)◦at the
kaon mass, is 3σ different from 37.6◦, the value predicted by combining dispersive methods with
experimental data. This was initially believed to be a pure statistical error issue. A more precise
calculation with 1436 configurations measured results in a bigger discrepancy as large as 7σ .

One error which might lead to this discrepancy could be excited state contamination. This
effect is hard to detect when we have only a single operator, since a fitting where the number of
states larger than the number of operators is usually difficult. For that reason we began to introduce
extra operators in our calculation. The first operator we added is the sigma operator(σ ). As shown
last year[4], the calculated phase shift for ππI=0 scattering can be updated to 30.9(1.5)(3.0)◦(Here
the second error is the excited state contamination, estimated using old method), which is around
2σ different from phenomenological value. In order to have better control over the size of excited
state contamination error, we added another operator this year, which is generated by two pions
with higher momenta, while keeping the total momentum zero. The details of this operator will
be explained later. We performed our calculation with 741 configurations, and we find this extra
operator does not offer a significant improvement over the two-operator result. Combining the new
result with a new method of analyzing the excited state contamination error gives what we believe
to be reliable results for ππ scattering in a stationary frame calculation.

We can also calculate ππ scattering phase shift with a moving frame, which gives phase shifts
at lower center of mass energy and allows us to calculate Lellouch-Lüscher factor more precisely.

2. Computational methods

Many of the details of our calculation have been explained in our previous work[4] and will not
be presented here. Notice for the stationary frame calculation we have two 4-quark ππ operators
(which I will call them ππ operators for simplicity), and for moving frame calculations we have
three ππ operators, and how we construct them will be explained later. For the stationary ππI=0

calculation, in addition to the two ππ operators, we have the 2-quark operator (which will be
labeled as σ operator). The structure of these operators are shown below:

σ(t,~p =~s−~s = 0) =
1
V ∑

~k

q̄(~k−~s, t)q(~k−~s, t)×h(~k) (2.1)
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π
i(t,~p = ~p1 + ~p2) =

1
V ∑

~k

q̄(~k− ~p1, t)τ i
γ

5q(~k+ ~p2, t)×h(~k) (2.2)

π
i
π

j(t, t +4, ~ptot = ~p1 + ~p2) = π
i(t, ~p1)π

j(t +4, ~p2) (2.3)

where q and q̄ are isodoublet quark fields and h(~p) is the Fourier transform of the smearing function.
How we treat the σ operator has been discussed last year[4]. Due to the G-parity bound-

ary condition(GPBC), pion operators carry non-zero momentum. In this calculation we introduce
two kinds of pion operator, π(111), where the pion carries momentum (±π/L,±π/L,±π/L), and
π(311), where one component of the pion momentum is replaced by ±3π/L. Using these single-
pion operators we can construct two stationary ππ operators, one comprising two π(111) operators
and the other two π(311), both with zero total momentum. Since we are interested in ππ scattering
with a specific angular momentum, we need to project all different ππ operators onto the represen-
tation we are interested in. In this calculation we are only interested in the S-wave scattering phase
shift, so we always project onto the naive representation. We label the projected ππ operators as
ππ(111,111) and ππ(311,311). We can combine the two kinds of pion operators in different ways
to construct moving ππ operators with three different total momenta, and for each total momen-
tum we have three different ππ operators, constructed with 0, 1 and 2 instances of the the π(311)
operator, with the π(111) operator otherwise used. We label the S-wave projected operators as
ππ(111,111), ππ(111,311), ππ(311,311).

For each isospin and total momentum, we can calculate the correlator matrix between multiple
operators by

CI
i j(tsrc, tsnk, ptot) = 〈OI

i (tsrc, ptot)OI
j(tsnk,−ptot)〉 (2.4)

Each element in this correlator matrix can be expanded by inserting a tower of states, each repre-
sented by a cosh function. There is another time-independent term which describes the so-called
“around the world term” where one pion is propagating along the positive time direction while the
other is propagating along the negative direction. For the I=0 channel, we have an additional vac-
uum term which dominates the error. Before fitting we perform a vacuum subtraction to remove it.
These correlation functions are fitted by a procedure which will be written down explicitly in next
section. A new technique for testing the goodness of fit has been adopted as an improvement on the
usual χ2 test, which takes into account the effects of autocorrelation and non-Gaussian underlying
distribution[3]. After fitting we obtain the energies of those states we include in the expansion, and
we can generalize Lüscher’s formula[5] to the case where we impose GPBC on a moving frame
calculation and then convert those energies into scattering phase shifts. We can compare those
phase shifts with dispersive predictions[6] as a crosscheck. We also performed a GEVP calculation
of those energies, and calculate their corresponding phase shift as a crosscheck.

3. Finite volume energy

Depending on whether the total momentum is non-zero and which isospin channel we are
calculating, we have four different cases to discuss. The first case is the ππI=2 scattering in the
stationary frame. In this case we have two operators: ππ(111,111) and ππ(311,311). We perform
two correlated fits, one with a single operator and a single state, and the other with two operators
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and two states. The fit function can be written down as follows:

Ci j(t) =
nstate

∑
n=1

Ain ·A jn · (e−Ent + e−En(Lt−t))+Ci j (3.1)

where nstate represents the number of states, Ais represents the overlap between the i-th operator
and the s-th state, Ci j represents the around the world constant and En represents the energy of
the n-th state. As for the fit range, we fix the tmax as 25 and tune the tmin. The fitted ground state
energies as functions of tmin for both fitting setups are plotted in the left panel of Figure 1.

Figure 1: The ground state energies as functions of tmin for several different fitting setups in the stationary
frame calculation. Left: I=2 ππ correlator; right: I=0 ππ correlator. The solid line in both plots represents
the dispersive predictions.

Comparing these two fit results, the introduction of the second operator, ππ(311,311), only
slightly lowers the ground state energy, which suggests it only has small effect in ππI=2 calculation.
Listed in table 1 is the normalized overlap matrix. The fact that this matrix is highly diagonal
suggests that the extra operator can give us only a little information about the ground state, which
is consistent with its small effect on ground state energy. It is also worth noting that the around the
world constant is significantly resolved from 0, which suggests we need to include it in fitting.

ππI=2 state0 state1

op0 1.0(0.0) 0.072(56)
op1 -0.068(3) 1.0(0.0)

ππI=0 state0 state1 state2

ππ(111,111) 1.0(0.0) 0.47(2) 0.31(7)
ππ(311,311) 0.053(9) -0.84(12) 1.0(0.0)

σ 1.0(0.0) -0.83(3) -0.87(22)

Table 1: Normalized overlap between operators and states in the stationary frame calculation. For each row,
the biggest overlap is normalized to 1. Left: ππI=2; right: ππI=0

The second case is ππI=0 scattering in the stationary frame. In this case we have three op-
erators: ππ(111,111), ππ(311,311) and σ . We perform four correlated fits, one with a single
operator and a single state, two with two operators and two states, and another one with all three
operators and three states when tmin is small than 6, and two states for other tmin’s since the fitting
can’t distinguish the third state when tmin exceeds 5. The fit function is almost the same as the
one we use for stationary ππI=2, with one difference that we drop the around the world term since
the fitting which includes the around the world term shows it is consistent with 0 in this case. By
dropping it we improve the statistical error by a factor of 1.5. We fix tmax as 15 rather than 25 since
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data with higher t are extremely noisy due to the disconnected diagram. We then tune the tmin. The
fitted ground state energies as functions of tmin for all four fitting setups are plotted in Figure 1.

Comparing these 4 fit results suggests that the σ operator substantially suppresses the ex-
cited state contamination. Without including the σ operator, introducing the ππ(311,311) operator
gives a lower energy compared with the single operator result, but after we include the σ operator,
ππ(311,311) operator gives us no improvement in ground state energy. The fact that the normal-
ized overlap matrix in table 2 is highly off-diagonal also supports the argument that extra operators
are helpful in controlling the excited state contamination error. The fact that ππ(111,111) cou-
ples significantly to both the first and second excited states suggests that our old single operator is
affected by excited state contamination.

The third case is I=2 scattering in a moving frame. In this case we have three operators:
ππ(111,111), ππ(311,111) and ππ(311,311). We perform four correlated fits as we did in sta-
tionary ππI=0 fitting. The fit function is the same as the one we choose for stationary ππI=2 fitting.
We fix the tmax as 25. Plotted in Figure 2 are the fitted ground state energies as functions of tmin for
all 4 fitting setups, with ptot = (2,0,0)π

L . For the other two total momenta, (2,2,0)π

L and (2,2,2)π

L ,
the plots and the corresponding energy results are similar and their phase shifts will be discussed
in the next section. Comparing those fit results, we reach a similar conclusion as in the stationary
ππI=2 fitting: the introduction of the extra two operators has no observable effect on the ground
state energy. We are led to the same conclusion by looking at the normalized overlap matrix listed
in table 2. This matrix is also highly diagonal, and the overlap between the extra two operators
and the ground state is smaller than 0.04, suggesting those two extra operators overlap little with
the ground state, which means they can’t improve the results of ground state energy obtained from
single state fitting.

Figure 2: Left: the ground state energy as we vary tmin for 4 different fitting setups in a moving frame
calculation with ptot = (2,0,0)π

L . Left: I=2 ππ correlator, right: I=0 ππ correlator. The solid line in both
plots represents the dispersive prediction.

The last case is I=0 scattering in a moving frame. We have the same three operators as in the
moving I=2 case. We perform the same fitting as we did in the stationary I=0 case, leaving out the
constant term for the same reason, and plot the result with ptot = (2,0,0)π

L in Figure 2. Comparing
those four plots we can see that the extra two operators improve the ground state energy by roughly
2σ , similar to what we get in the stationary ππI=0 calculation. We can get the same conclusion
by looking at the normalized overlap matrix in table 2, here the overlap between ππ(311,111) and
ππ(111,111) is 0.1, which is not as small as I=2. Also the overlap between ππ(111,111) operator
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ππI=0 state0 state1 state2

op0 1.0(0.0) 0.049(3) 0.037(8)
op1 0.032(0.000) 1.0(0.0) 0.043(11)
op2 −13(0)×10−4 0.069(2) 1.0(0.0)

ππI=2 state0 state1 state2

op0 1.0(0.0) -0.31(5) 0.14(2)
op1 0.09(2) 1.0(0.0) -0.30(20)
op2 0.01(1) 0.09(5) 1.0(0.0)

Table 2: Normalized overlap between operators and states in a moving frame calculation with ptot =

(2,0,0)π

L . For each row, the biggest overlap is normalized to 1. Operators with a higher index are con-
structed with a larger number of π(311). Left: ππI=2; right: ππI=0

and the first excited state is roughly 0.3, which means if we only fit with a single operator, our result
will be affected substantially by excited state contamination. This effect becomes smaller as we
move to the larger total momenta, (2,2,0)π

L and (2,2,2)π

L . We believe this is because the generation
of states with different pion momentum from those of the constituent single-pion operators requires
the exchange of momentum between those pions. The interaction of the pions is parameterized by
the phase shift, which becomes smaller as the relative momentum decreases, hence the couplings
are expected to decrease as we increase the center of mass momentum.

4. Phase shift and excited state contamination error

Using the energies we found in the last section, we can calculate the ππ scattering phase shifts
at 4(3 in I=0) different energies. The results are plotted in Figure 3. Also plotted are the phase
shifts calculated based on the energies obtained using the GEVP technique. We can see that our
results for the I=2 scattering are consistent with the dispersive prediction, while for I=0 scattering
our results are slightly lower. Also the fitting and GEVP results are consistent for most cases except
the I=0 moving frame calculation.

Figure 3: Left: Phase shifts for I=2 (black points) and I=0 (red points) ππ scattering at 4(3) different
energies. Those energies are calculated from both multi-state fitting and GEVP. Only statistical errors are
included. Right: Phase shift results where excited state contamination error is included. Solid error bars
represent the statistical error and dash error bars show the combined error. The I=2 channel is unaffected so
their results are not plotted here.

From the discussion in last section, we see that for all 4 cases, there could be 1 or 2 operators
whose introduction doesn’t improve the final result. Does that mean we can trust our results and
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say they are unlikely to suffer from excited state contamination? Are there any excited state con-
tamination errors in the results that are bigger than statistical error that we failed to recognize in
the calculation? This is possible if all the operators we introduce have little overlap. Then it will
be difficult for us to get information about the ground state from those extra operators. This lack of
overlap does happen in our I=2 calculation.

To answer this question, we develop a new technique to estimate the remaining systematic
error. For each case, we start by performing a n-state n-operator fitting as we did in last section,
where n is the maximum number of operators we have for that case. Then we perform a frozen fit
on ππ(111,111) operator to n+1 states, where the ground state energy and coupling are free, but
those of the next n−1 states are frozen to the results of the first fit. The energy of the n+1th state is
frozen to the prediction of a model (e.g. the dispersive prediction). The difference between the two
fit results is treated as the excited state contamination error. Based on this technique, we update our
phase shift plots and the results are shown in Figure 3. The reason why I=2 channel is not included
is because excited state contamination estimated by this method for that case is negligible. We can
see that the excited state contamination is still obvious in moving I=0 results, while it is no longer
important in stationary I=0 calculation.

5. Conclusion and outlook

We have described our lattice calculation for the ππ scattering phase shifts for both I=0 and I=2
at 3 and 4 different energies, respectively. We introduce multiple operators to control the excited
state contamination. For different isospin channels and different total momenta, the effects of
these extra operators are different. A new technique has been developed to estimate the remaining
excited state contamination error. Our results are consistent with the dispersive predictions for
I=2, and slightly different from dispersive prediction for I=0 moving frame. For I=0 stationary
frame, after combining the statistical error, finite lattice spacing error, finite volume error, slightly
unphysical pion mass error we get a result of 32.4(2.3)◦. Our new technique shows excited state
contamination is still important in I=0 moving frame calculation, and one thing to do in the future is
to introduce a σ operator in the moving frame calculation, likely an important addition considering
its effect in the stationary frame calculation.
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