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We explore the QCD phase diagram at finite density with four-flavor staggered fermions using
the complex Langevin method, which is a promising approach to overcome the sign problem. In
our previous work on an 8 x 16 lattice at § = 5.7 with the quark mass m = 0.01, we have found
that the baryon number density has a clear plateau as a function of the chemical potential. In this
study, we use a 16 x 32 lattice to reduce finite volume effects and find that the plateau structure
survives. Moreover, the number of quarks in the plateau region turns out to be 24, which is exactly
the same as the one obtained previously on the 8* x 16 lattice. We provide a simple interpretation
of this number, which suggests that the Fermi sphere is starting to form.
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1. Introduction

One of the long-standing problems in QCD is to explore its phase diagram at finite density,
which is important in understanding the results of the heavy-ion collision experiments and the in-
terior structure of neutron stars. However, nonperturbative aspects of QCD at finite density remain
elusive due to the sign problem, which makes conventional Monte Carlo methods inapplicable.

One of the promising approaches to overcome the sign problem is the complex Langevin
method (CLM) [1, 2]. In this method, we consider a fictitious time evolution of the complexified
dynamical variables described by the Langevin equation with the drift term given by the gradient
of the complex action. If this time evolution reaches a unique equilibrium, physical quantities
can be computed as expectation values by extending them holomorphically to functions of the
complexified variables. This procedure does not rely on the probabilistic interpretation of the
path integral weight, and hence the sign problem can be circumvented. However, the equivalence
between the CLM and the path integral formulation is highly nontrivial, and in fact it is known that
the method does not always give correct results.

Recently, the condition for justifying the CLM has been clarified [3, 4, 5, 6], and various tech-
niques [7, 8, 9, 10] have been developed to enable stable simulations satisfying these conditions.
Thanks to these developments, the CLM has been applied successfully to finite density QCD in the
heavy dense limit [8, 11, 12] and at high temperature [13, 14].

In this work, we focus on the low temperature region with reasonably small quark mass. Stud-
ies in this direction have been done so far by using the staggered fermions with two [15, 16] or four
[17, 18] flavors and by using the Wilson fermions [19]. In our previous work using the staggered
fermions with four flavors, we employed an 8 x 16 lattice [18], where we have found that the
CLM can be justified even at large quark chemical potential u /7T < 8, without using the deforma-
tion technique [9]. As a criterion for justifying the CLM, we used the probability distribution of
the drift term [6]. Namely we consider that the results of the CLM are reliable if the probability
distribution falls off exponentially or faster. This property of the distribution was indeed observed
in some region of the quark chemical potential due to the gap in the Dirac eigenvalue distribution
along the real axis [20].

Within the region in which the CLM is reliable, the baryon number density is found to exhibit
a plateau as a function of the chemical potential. Since this result is totally different from that of the
phase quenched model, the effect of the phase of the fermion determinant, which is expected to be
implemented correctly in the CLM, must be playing an important role. However, we did not have
a clear physical interpretation of this plateau behavior at that time partly because we thought that
the interpretation might be obscured by severe finite volume effects due to large § = 5.7, which
was chosen to stabilize the complex Langevin simulation. This motivated us to employ a 163 x 32
lattice, which has double the size in each direction compared with the previous study. Based on the
results, we provide a clear interpretation of the plateau behavior.

The rest of this paper is organized as follows. In section 2, we briefly review how we apply the
CLM to finite density QCD and how we judge the validity of the results. In section 3 we show the
results obtained by the CLM on a 163 x 32 lattice. In particular, we provide a clear understanding
of the plateau observed in the p-dependence of the quark number. The section 4 is devoted to a
summary and discussions.
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2. Complex Langevin method for finite density QCD

In this work we investigate finite density QCD with N; = 4 flavor staggered fermions. After
integrating out fermion fields, the partition function reads

Z= / [1dU.v detM [U; ) e 57 2.1)
X,V

where U,y € SU(3), (v =1,2,3,4) are the link variables with x = (x1,x2,x3,x4) being the coordi-
nates of each site. The action S,[U] is defined by

Sg = —g Zx‘,“;v tr(UWv + ijﬁv) s Uy = UUr U U (2.2)
Since the fermion determinant detM[U, 1] becomes complex for nonzero chemical potential, stan-
dard Monte Carlo methods suffer from the sign problem.

In order to overcome this problem, we apply the CLM, which is a complex extension of the
stochastic quantization based on the Langevin equation. In this method, the link variables Uy y are
complexified as %, € SL(3,C), and accordingly the drift term and the observables, which are
functions of Uy, y, have to be extended to functions of % , holomorphically. The complexified link
variables are updated according to the complex version of the Langevin equation

Uy (t+€) =exp i (—evey (% (1)) + VeEn (1) %y (1), (2.3)

where ¢ is the discretized Langevin time and ¢ is the stepsize. The drift term v, , (%) in eq. (2.3) is
defined by the holomorphic extension of

d .
vev(U) =Y A %S(e’“%ljx’v) : (2.4)

a a=0
where S[U| = S,[U] —IndetM[U;u] and A, (a=1,---,8) are the generators of SU(3) normalized
by tr(A,Ap) = Ogp. The noise term 1, (¢) in eq. (2.3), which are 3 x 3 traceless Hermitian matrices,
are generated with the Gaussian distribution exp (—tr{ nﬁ MG
The expectation value of the observable O(U) can be obtained as

oW = 1im = [ ar 0@ @), 2.5)

where the expectation value ( - ), on the right-hand side should be taken with respect to the Gaus-
sian noise 1, and 7o should be sufficiently large to achieve thermalization. The effect of the complex
fermion determinant is supposed to be included through the complex drift term in the above process
(2.3), and there is no need for reweighting unlike the path-deformation based approach such as the
generalized Lefschetz-thimble method. The observable we focus on here is the quark number

1 d
Ny=—=—InZ, (2.6)
L du
where L, is the number of sites in the temporal direction, which gives the inverse temperature in
units of the lattice spacing.
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In order to judge whether the obtained results are correct or not, we use the criterion proposed
in Ref. [6]. Let us define the magnitude of the drift term as

u= \/1 maxtr(vi wiv) s 2.7)
3 xv ’ ’

and consider its probability distribution p(u). If p(u) falls off exponentially or faster, the result is

reliable. Conversely, the CLM is not justified when p(u) shows a power law fall-off. One of the

origins of the power law fall-off is referred to as the singular-drift problem [5], which occurs in our

case when the Dirac operator acquires near-zero eigenvalues frequently. Another origin is referred

to as the excursion problem [3], which occurs when the unitarity norm

N =

T _
Ny x,vtr(%"/%y 1) (2.8)

becomes too large, where Ny is the number of lattice sites. In order to avoid this problem, we
perform the gauge cooling [8]. (See Ref. [6] for justification.) Namely we perform a complexified
gauge transformation

Uy — 8xUv8, )y, Where g, € SL(3,C) (2.9)

in such a way that the unitarity norm is minimized after updating %, , by the complex Langevin
equation (2.3). We have confirmed that the excursion problem does not occur for the parameter
region explored in this work.

3. Results

We have performed simulations on a 16 x 32 lattice with B = 5.7 and the quark mass m =
0.01. The Langevin stepsize is chosen initially as € = 10~* and is reduced adaptively when the
magnitude of the drift exceeds a certain threshold [7]. We have made (5 ~ 15) x 107 total Langevin
steps for each set of parameters.

Let us first check the validity of the CLM. In Fig. 1, the probability distribution of the drift term
p(u) is plotted! for various values of y. We find for u < 0.3 that p(u) shows a clear exponential
fall-off and hence the simulations are reliable. For p > 0.3, on the other hand, the distribution p(u)
shows a power law fall-off, suggesting that the singular drift problem occurs.

In Fig. 2, we plot the quark number against the quark chemical potential u, where we also plot
the previous results obtained on a 83 x 16 lattice [18] for comparison. Here we plot only the data
that are reliable judging from the probability distribution of the drift term. Surprisingly, for both
lattice sizes, we observe a plateau at the height of Ny = 24, although the plateau region is shifted
towards smaller values of u for the larger lattice.

Here we provide a physical interpretation of this behavior. The first thing to note is that the
spatial size of our lattice is as small as Lga ~ 0.36 and 0.73 fm for Ly = 8 and 16, respectively, since

IDue to a bug found recently in our parallel code, the magnitude of the drift is calculated by u = 1/ %tr(v;vvx_v) for
a randomly chosen (x, V) instead of using (2.7) with the maximum. We have found that this bug affects the distribution
of the drift term by shifting it slightly to left, but the qualitative behavior of the tail seems to be unaltered. We will
address this issue in the full paper.
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Figure 1: The probability distributions of the drift term for various values of the chemical potential.
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Figure 2: The quark number is plotted against the quark chemical potential . The triangles and squares
represent the CLM results on 8 x 16 and 163 x 32 lattices, respectively. We show only the data that are
reliable judging from the probability distribution of the drift term.

the lattice spacing a is estimated as a ~ 0.045 fm for § = 5.7 and m = 0.01 with Ny = 4 staggered
fermions. Therefore, the effective gauge coupling is actually small due to the asymptotic freedom,
which makes the free fermion picture valid. The energy of a quark is given by E(p) = +/p? + m?
for the discrete momentum p = ZL—’:n, where n is a three-dimensional integer vector considering
the periodic boundary conditions imposed on the spatial directions. At zero temperature and for
the quark chemical potential within the region m < u < 4/ (%’f)2 + m?2, the path integral should be
dominated by a state with the maximum number of quarks with zero momentum allowed by the
Pauli principle. This number is 4 x 3 x 2 = 24, considering the number of flavor, color and spin
degrees of freedom. Our results can be qualitatively understood in this way.
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In order to have quantitative understanding of our results, we first need to take into account the
finite temperature effects considering that the temperature used in our simulation is about 7" ~ 270
and 140 MeV for N; = 16 and 32, respectively. These energy scales are higher than or comparable
with the critical temperature T;/+/0 =~ 0.4 for Ny = 4 staggered fermions [21], where o is the
string tension. In the forthcoming paper [22], we show that our results can be understood semi-
quantitatively by the p-dependence of the quark number that can be obtained by using the Fermi
distribution function for finite temperature. (See Ref. [23] for related work.) Furthermore, the
remaining discrepancies can be understood as the effects of the interactions, which is confirmed by
calculating the quark number using the lattice perturbation theory.

4. Summary and discussions

In this work we have investigated finite density QCD by the CLM in the low temperature region
with reasonably small quark mass using four-flavor staggered fermions on a 163 x 32 lattice. In
particular, we have found that the quark number exhibits a plateau as a function of the chemical
potential. In the plateau region, the quark number turns out to be 24, which is exactly the same as
what was found in our previous work on an 8° x 16 lattice although the plateau region shifts towards
smaller values of (. We have provided a qualitative understanding of these behaviors based on the
free fermion picture at zero temperature. The plateau appears because of the gap in the energy
spectrum of fermions due to the finite volume. As the quark chemical potential is increased, only
the fermions with zero momentum can be generated. The number 24, which appears as the height
of the plateau in the plot of the quark number can be understood as the number of internal degrees
of freedom of the fermion. The quark number is expected to jump to the second plateau at y ~ %’:
While this behavior is somewhat obscured by finite temperature effects in our setup, the shift of the
plateau region can be understood naturally.

The significance of this result is two-fold. First, the fact that the behaviors observed by the
CLM have found a clear physical interpretation confirms further that the method is working and we
are getting correct results. While the interpretation shows that we are well within the perturbative
regime due to the small spatial extent and the asymptotic freedom, it would be nice to test the
method nevertheless in a region in which we can obtain explicit results perturbatively. To our
knowledge, the behaviors reported above have never been observed by other methods, which clearly
demonstrates the usefulness of the CLM. Second, the condensation of the zero momentum modes
may be regarded as the beginning of the formation of the Fermi sphere, which is crucial in color
superconductivity. By increasing the lattice size further, the Fermi sphere is expected to grow
due to condensation of higher momentum modes. If such behaviors can be observed within the
applicability of the CLM, we should be able to study the color superconductivity in the near future.
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