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1. Introduction

Quarkonium is an important probe of quark-gluon plasma formation in relativistic heavy ion

collision experiments. One can define an effective “thermal potential” to understand the medium

modification of quarkonia [1]. The thermal potential plays an important role in the treatment of

in-medium quarkonia as open quantum system [2]. To define the potential at finite temperature

consider the real time QQ̄ operator, M(r = |~x−~y|, t) = ψ̄(~x, t)U(~x,~y; t)ψ(~y, t). In the static limit,

the forward correlation function of this operator c(r, t) = 〈M(r, t)M†(r,0)〉 becomes proportional to

a rectangular real time Wilson loop w(r, t). The static potential is defined as [1]

V (r) = i lim
t→∞

∂ log〈w(r, t)〉

∂ t
. (1.1)

Eqn. (1.1) has been calculated in leading order HTL perturbation theory. It gives a complex

potential: V (r) = V re
T (r) − iV im

T (r), with V re
T (r) the usual Debye-screened Coulomb potential and

V im
T (r) =

2g2 T

3π

∫ ∞

0
dz

z

(z2 +1)2

(

1−
sinzmD r

zmD r

)

. (1.2)

Here T denotes the temperature, and mD is the Debye mass.

On the lattice we can only calculate Euclidean-time Wilson loop wE(r,τ), defined in the time

interval τ = [0,β = 1/T ). This can be connected to the real-time Wilson loop w(r, t) through a

spectral function ρ(ω) [3],

〈wE(r,τ)〉=
∫ ∞

−∞
dω ρ(ω) e−ωτ . (1.3)

w(r, t) can be constructed by taking Fourier transform of ρ(ω). On lattice obtaining ρ(ω) is very

difficult problem as we have only small number of data points along the temporal direction.

There have been attempts to calculate ρ(ω) using various Bayesian analysis methods. Maxi-

mum Entropy method was used in Ref. [3]; however the potential obtained there was not screened

above Tc. Also the quality of signal for Wilson loop deteriorates very fast with the size of the loop.

To improve the signal, we have used multilevel algorithm, slicing the lattice in τ direction, and

used APE smeared spatial links in the construction of the Wilson loop. If a suitable potential can

be defined, it should not depend on the smearing of the spatial link; we have checked this by us-

ing various levels of smearing. In the literature Coulomb gauge fixed Wilson line correlators have

often been used to extract the potential. Bayesian reconstruction of such a correlator has shown a

screened potential, and the imaginary part of the potential has also been obtained [4]. However the

results have large errors [4]. There are also studies using the method of moments and making some

ansatz for the form of ρ(ω) [5].

We use a different analysis method, using the structure of the Wilson loop; our method will

be described in the next section. In Sec. 3 we will show the results for the potential for gluonic

plasma. More details regarding these can be found in Ref. [6].

For QGP phenomenology, one needs the thermal potential not only between QQ̄ in the singlet

channel, but also when they are in an octet color configuration. The octet potential is also a nec-

essary ingredient for the open quantum system approach [2]. In Sec. 4 we discuss the interaction

potential between the static Q and Q̄ in a color-octet configuration.
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2. Method

At zero temperature 〈wE(r,τ;T = 0)〉∼ e−V (r)τ at large τ; as a result one would see a plateau in

the effective mass me f f (r,τi) = log
〈wE(r,τi)〉

〈wE(r,τi+1)〉 . V (r) determined from lattice is qualitatively similar

to the Cornell potential. However at finite temperature above Tc there is no plateau in the effective

mass. Given that VT (r) is expected to have an imaginary part [1], one should not expect a plateau

either.

Motivated from HTL perturbation theory, we split wE(r,τ) as:

log(〈wE(r,τ)〉) =
1

2
log

(

〈wE(r,τ)〉

〈wE(r,β − τ)〉

)

+
1

2
log(〈wE(r,τ)〉〈wE(r,β − τ)〉). (2.1)

Let us first focus on the anti-periodic part A(r,τ) = 1
2

log
(

〈wE (r,τ)〉
〈wE(r,β−τ)〉

)

. From perturbation

theory one expects A(r,τ) = (β
2
− τ)V re

T (r). In the left panel of Fig 1 we have plotted the effective

mass m(r,τ) and
A(r,τ)

(β/2−τ) . From the figure it is clear that non-perturbatively also A(r,τ) is linear in

τ around β/2. For the remaining part, P(r,τ) = 1
2

log(〈wE(r,τ)〉〈wE(r,β − τ)〉), we can again take

help from perturbation theory and write it as

P(r,τ) =
∫ ∞

−∞
dω σ(ω)(e−ωτ + e−ω(β−τ) + τ independent parts). (2.2)

Now to have a potential i∂tP(r, it) should approach a constant as t goes to infinity.

i∂tP(r, it) =
∫ ∞

−∞
(e−iωt − e−ω(β−it))ω σ(ω) dω . (2.3)

Therefore we need σ(ω) to go like σ(ω)∼ 1
ω2 as ω approaches zero. On the right panel of Fig. 1

we have shown a fit of ∂τP(r,τ) calculated from lattice data with the leading 1
ω2 behaviour. We can

see that almost the entire range of τ can be fitted with this leading singular structure.
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Figure 1: (Left) Comparison of effective mass for m(r,τ) and A(r,τ)/(β/2− τ) for 1.5 Tc. (Right)
dP(r,τ)

dτ ;

see the discussion around Eq.(2.3).

One of the 1/ω in 1/ω2 comes from a factor 1+ nb(ω), where nb(ω) is the Bose distribu-

tion function [1]. This can be understood from the structure of the time-ordered correlator [6].

Therefore we expand σ(ω) in the following form,

σ(ω) = (1+nb(ω))

(

βVim

2πω
+ c1ω + c2ω3 + ...

)

. (2.4)
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Only the odd terms are present because the even ones do not contribute to Eq. (2.2). A very good

fit of the data can also be found just by using two terms in the series. The potential is obtained from

the coefficient of 1/ω in the expansion, as only this term contributes in the long time t limit. Using

Eq. (2.4) one would then get

∂τP(r,τ) = Vim cot(
πτ

β
) + c1 G1(τ ,β ) + c2G2(τ ,β ) + ... (2.5)

Gn(τ ,β ) =
2(2n)!

β 2n+1

(

ζ

(

2n+1,
τ

β

)

− ζ

(

2n+1,1−
τ

β

))

.

Our strategy for calculating potential is then obvious: we do a linear fit of A(r,τ) near β/2 to

get the real part of the potential and the imaginary part can be obtained by fitting Eq. (2.5) More

details on the analysis can be found in [6].

3. Results for singlet channel

We show here the results of the singlet potential obtained from anisotropic lattices with cou-

pling β = 6.64 and the bare anisotropy ξb = 2.55, which corresponds to a renormalized anisotropy

ξ = 3 and a spatial lattice spacing of 0.048 fm. For results with other lattice parameters and discus-

sion of cutoff effects see [6]. The spatial volume was kept fixed at 1.44 fm, and temperatures upto 2

Tc were explored by varying the temporal extent Nt . We used APE smearing for the spatial links of

the Wilson loop. The potential was calculated with various number of smearing steps, where each

smearing step involved replacing the spatial links U i
~x by ProjSU(3)

(

α U i
~x + ∑ j 6=i U

j

~x U i
~x+ ĵa

U
j†

~x+îa

)

,

with α = 2.5.
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Figure 2: (Left) V re
T (r) and (right) V im

T (r) at 1.5 Tc, calculated with different levels of APE smearing.

In Fig. 2 we have plotted the real and imaginary parts of the potential as a function of the

number of smearing sweeps for T = 1.5Tc. From the figure it is clear that the potential has very

minor dependence on the smearing after a certain number of smearing. Anyway for the calculation

of error we have included the variation with respect to smearing as a systematic error. When

quoting the value of imaginary part the error also includes the variation of the fit results when we

change the number of terms in Eq. (2.4).

In Fig. 3 we show the temperature dependence of the singlet potential. V re
T (r), shown in the

left panel, shows a clear screening behavior above Tc. At a temperature of 0.75 Tc V re
T (r) shows the

3
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Figure 3: (Left) V re
T (r) and (right) V im

T (r) at different temperatures.

usual linear string tension behavior at long distances. Above Tc this linear rise is screened, with

the screening increasing with temperature. However, quantitatively the potential is different from

the screened Coulomb form; addition of a screened string tension term [7] is needed to fit V re
T (r) at

these temperatures.

On the right hand side we have plotted V im
T (r). The results below Tc are consistent with zero

and are not shown in the plot. Above Tc, V im
T (r) is very different from the perturbative results of

Ref. [1]. It is also seen to increase with rise in temperature. More details about the temperature

dependence and parametrization of V im
T (r) can be found in Ref. [6].

4. Results for octet channel

For phenomenology of quarkonia in QGP, one also needs to understand the interaction between

Q and Q̄ when they are in a color octet configuration. In analogy with the singlet state, we can try to

define a potential using the point-split operator ψ̄(~x, t)U(~x,~x0; t)TaU(~x0,~y; t)ψ(~y, t) [8]. This state,

however, is not gauge invariant.

A gauge invariant state with the quark content of the above operator can be formed by adding

a color-adjoint gluonic operator Ha [9]:

O(r = |~x−~y|, t;~x0) = ψ̄(~x, t)U(~x,~x0; t)TaHa(~x0, t)U(~x0,~y; t)ψ(~y, t). (4.1)

Taking the above source will, in the static limit, lead to Wilson loop with inserted TaHa(~x0) at both

initial and final time slices. Here we take two operators, Bz
a and Bx

a + iB
y
a, for Ha, where the quark

and the antiquark are taken to be separated in the z direction. These are the hybrid states with

gluonic angular momentum L = 0 and L = 1 along z direction for Bz
a and Bx

a+ iB
y
a respectively. The

results shown in this section are from Wilson loops with 200 steps of smearing for spatial links.

In the left panel of Fig. 4 we show the octet potential at the temperature of 0.75 Tc. For com-

parison, the singlet potential at this temperature is also shown. As with the singlet channel, below

Tc the potential is largely insensitive to temperature and closely resembles the zero temperature

potential. In leading order perturbation theory these hybrid potentials at short distances only get

contribution from octet channel, and the potential is independent of Ha [9] at short distance. How-

ever, at long distance the potential depends on Ha [9], leading to different hybrid potentials for the

L = 0 and L = 1 channels.
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Figure 4: Singlet and “octet” potentials between static Q and Q̄ below (left, at 0.75 Tc) and above (right) the

deconfinement transition temperature.

At finite temperature we have calculated the real part of the potential for the state O(r, t) using

the method of Sec. 2. The plateau structure here is not as good as that of the singlet, however the

real part of the potential can be obtained by fitting a few points near β/2. Preliminary results for

the potential are shown in the right panel of Fig. 4. Here we find that the potential is identical for

the two choices of Ha we have used. This suggests that at finite temperature the effect of Ha gets

decoupled from the potential at all distances, and we can meaningfully talk about the real part of

the effective thermal potential for octet QQ̄. Of course, it would be good to further check this with

other choices of the gluonic operator.

In the figure we have also shown V re
T (r) for the singlet potential, at the same temperatures. As

the figure shows, the octet and singlet potential approach each other at long distances. At higher

temperatures they approach each other at shorter distances. We stress that we did not add any

additive renormalization constant to the octet potential to match with singlet: as the effect of Ha

gets decoupled, the renormalization of the octet gets fixed once the additive renormalization for the

singlet is fixed.

At short distances, the singlet and octet potentials are attractive and repulsive, respectively,

consistent with perturbation theory. To further investigate conformity with perturbation theory

without having to worry about the additive renormalization constant, we define [10] δVo,s(r) =

Vo,s(r+as)−Vo,s(r), where o,s stand for octet and singlet, respectively. In leading order of pertur-

bation theory, δVs(r) =−8δVo(r). The nonperturbative estimates, shown in Fig. 5, agree with this

prediction within our errorbars.

5. Summary

Extraction of a thermal potential from the Euclidean time Wilson loop is difficult and often

involves Bayesian analysis. Here we calculate the complex “thermal potential” [1] using various

properties of Wilson loops, motivated from perturbation theory; the method is described in Sec.

2. We have discussed results for the singlet potential in Sec. 3. On crossing Tc, the linear con-

fining part of the real part of the potential is screened, the screening increasing with increase in

temperature. However, at least upto temperatures of 2 Tc the singlet V re
T (r) is different from the

perturbative potential. In the deconfined phase, the effective potential also acquires an imaginary
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Figure 5: Comparison of octet δVo and singlet δVs, at (left) 1.5 Tc and (right) 2.0 Tc. Here for octet, the

results for Ha = Bx
a + iB

y
a are shown.

part. The imaginary part is very different from the perurbative result, with the potential not satu-

rating upto the distance scale rTc ∼ 1.4, or r ∼ 1 fm. We have also studied the effective thermal

potential between the Q and Q̄ in an octet configuration. Preliminary results for the real part of the

potential are discussed in Sec. 4. Our results indicate that, unlike at zero temperature, the thermal

potential between hybrid states is not sensitive to the gluonic structure in O(r), Eq. (4.1). While at

short distances the octet potential is repulsive, at long distances it approaches the singlet potential.

Qualitatively the potential is similar to the free energy for the octet state [11].

We acknowledge support of the Department of Atomic Energy, Government of India, under

project no. 12-R&D-TFR-5.02-0200. The computations reported here were performed on the

clusters of the Department of Theoretical Physics, TIFR. We would like to thank Ajay Salve and

Kapil Ghadiali for technical support.

References

[1] M. Laine, O. Philipsen, P. Romatschke & M. Tassler, JHEP 0703 (2007) 054.

[2] Y. Akamatsu, Phys. Rev. D 87 (2013) 045016; Phys. Rev. D 91 (2015) 056002.

[3] A. Rothkopf, T. Hatsuda & S Sasaki, Phys. Rev. Lett. 108 (2012) 162001.

[4] Y. Burnier, O. Kaczmarek & Alexander Rothkopf, Phys. Rev. Lett. 114 (2015) 082001 (2015).

[5] P. Petreczky & J. weber, Nuclear Physics A 967 (2017) 592.

[6] D. Bala & S. Datta, arXiv:1909.10548 [hep-lat].

[7] Y. Burnier & A. Rothkopf, Phys. Lett. B 753 (2016) 232

[8] A Bazavov & P Petreczky 2013 J. Phys: Conf. Ser. 432, 012003.

[9] G.S. Bali & A. Pineda, Phys. Rev. D 69 (2004) 094001.

[10] O. Philipsen, Phys. Lett. B 535 (2002) 138.

[11] F. Zantow, O. Kaczmarek, F. Karsch & P. Petreczky, Proceedings, 5th International Conference on

Strong and Electroweak Matter, World scientific, 2003 (hep-lat/0301015).

6


