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investigated in the infrared limit under the renormalization group flow. It is shown that the theory

has an infrared attractive fixed point at 1/g2 = θ = 0, which leads to linear confinement and

naturally solves the strong CP problem. In particular, any initial value of θ 6= 0 is found to be

driven to θ = 0 at macroscopic distances, where quarks and gluons freeze into hadrons by the

confinement mechanism.
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1. Introduction

Undoubtedly, the two most profound unsolved problems of the strong interactions are color

confinement and CP invariance. While we have strong numerical evidence for color confinement,

and some understanding of the dynamical mechanism that drives it, though no proof, we lack any

compelling reason why CP is conserved in the strong interactions. Recall that the ground state

of the theory in Euclidean space-time is the θ vacuum, arising from the CP violating term in the

action

Sθ = iθ Q , Q =
1

32π2

∫

d4x Fa
µν F̃a

µν ∈ Z , (1.1)

the so-called θ term, where Q is the topological charge. A nonvanishing value of θ would result,

for example, in an electric dipole moment dn of the neutron. Current experimental limits on |dn|,
combined with lattice calculations of dn/θ , lead to the upper bound |θ | . 7.4× 10−11 [1]. This

anomalously small number is referred to as the strong CP problem.

A popular proposal for the resolution of the strong CP problem is the Peccei-Quinn model [2].

In this model the CP violating angle θ is shifted to zero at the expense of introducing a hitherto un-

known particle, the axion, thus making the theory independent of θ . Other authors [3] have argued

that the theory has an infrared attractive fixed point at θ = 0, with reference to the integral quantum

Hall effect [4], which would drive any initial value of θ 6= 0 to θ = 0 (mod 2π) at macroscopic

length scales. Yet other models suggest that the theory does not confine for nonvanishing θ . So, for

example, the dual superconductor model of confinement [5]. In this model the monopoles acquire

a color-electric charge [6], em = θ/2π , which would drive the theory into a Higgs or Coulomb

phase.

The idea [3] that the vacuum angle θ is scale dependent, like any other bare parameter of

the Lagrangian, and flows to zero in the infrared limit, appears to us the most natural solution of

the strong CP problem. It requires renormalization group techniques to prove it. Early investiga-

tions [7] of the Yang-Mills theory using truncated renormalization group transformations show that

indeed θ = 0 in the infrared limit, provided the theory confines, culminating in 1/g2 = 0. In this

work we seek a lattice solution of the problem.

We may restrict ourselves to the SU(3) Yang-Mills theory. Quarks are not expected to change

the qualitative picture, as long as they are massive. In the infrared limit quarks are expected to

assume masses of several hundred MeV and above. The effective Lagrangian at renormalization

scale µ reads

L (µ) =
1

4g2(µ)
Fa

µνFa
µν + iθ(µ)

1

32π2
Fa

µν F̃a
µν , (1.2)

where each value of θ defines a different vacuum. The static properties of the theory are revealed by

the running coupling constant g2(µ) and CP violating angle θ(µ) in the infrared limit µ → 0. All

we are left with in this limit, where quarks and gluons freeze into hadrons, are tree-level diagrams.

To obtain L (µ ′) for µ ′ < µ we need to integrate out the gauge fields of virtualities between µ ′ and

µ . This is accomplished by the gradient flow [8], which can be interpreted [9, 10] as a particular

realization of the renormalization group flow.
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2. The gradient flow

The gradient flow describes the evolution of fields as a function of flow time t, which can be

identified with the renormalization scale µ = 1/
√

8 t for t ≫ 0. The flow of SU(3) gauge fields

Bµ(t,x) = Ba
µ(t,x)T a is defined by [8]

∂ t Bµ = Dν Gµν , Gµν = ∂µ Bν −∂ν Bµ +[Bµ Bν ] , Dµ ·= ∂µ ·+[Bµ , ·] (2.1)

with the condition Bµ(t = 0,x) = Aµ(x), where Aµ(x) is the gauge field of the initial configuration.

On the lattice this leads to the effective action at flow time t [11]

S(Bt) = S(A)+
16g2

3a2

∫ t

0
dτ S(Bτ) , (2.2)

where Bt stands for Bµ(t,x), and a is the lattice spacing. In (2.2) the gauge fields of virtualities

≥ 1/
√

8 t are integrated out. It is expected that the physics is left unchanged under the gradient

flow. In the SU(3) Yang-Mills theory this is known to be the case for the topological susceptibility

χt = 〈Q2〉/V , V being the space-time volume, which we confirm.

The lattice calculation proceeds in two steps, the simulation of ensembles of gauge field con-

figurations, to be followed by gradient flow transformations. So far we have simulated the SU(3)

Yang-Mills theory on 164 and 244 lattices at a single value of β = 6/g2 = 6.0, using the plaquette

action

S = β ∑
x,µ<ν

(

1− 1

3
ReTr Uµν(x)

)

. (2.3)

The lattice spacing at this value of β is a = 0.082(2) fm, taking
√

t0 = 0.146(4) fm to set the

scale, with t0 being defined by t2
0 E(t0) = 0.3. See, for example, [12]. Currently we have 4000

uncorrelated configurations on the 164 lattice and 5000 configurations on the 244 lattice at our

disposal. Work on larger lattices is in progress. For our problem it is sufficient to compute the flow

of the action density

E =
1

4
Ga

µνGa
µν , (2.4)

where Ga
µν is the lattice version of the field tensor stated in (2.1), and the topological charge Q, as

we shall see.
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Figure 1: The dimensionless quantity t2E(t) as a function of t/a2 on the 164 lattice (left panel) and the 242

lattice (right panel). At this point the topological sectors have been averaged over, corresponding to θ = 0.
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We consider flow times up to t/a2 = 100, which corresponds to an infrared cut-off of µ ≈
100MeV. In Fig. 1 we show t2E(t) as a function of t/a2 on our two volumes. While both results

agree for t/a2 . 40, we observe finite volume effects at larger times on the 164 lattice. That is not

surprising, as the action density (2.4) begins to get ‘smeared’ over the whole volume in this case.

3. Running coupling and linear confinement

We consider the case θ = 0 first. The Yang-Mills gradient flow defines a running coupling

constant at renormalization scale µ in the gradient flow scheme,

g2
GF(µ) =

16π2

3
t2E(t) . (3.1)

On the larger lattice, Fig. 1 (right panel), we find t2E(t) to be a strictly linear function of t for

t/a2 & 1. This implies g2
GF(µ) ∝ 1/a2µ2 for µ . 1GeV, which results in the gradient flow beta

function
∂ αGF

∂ ln µ
=−2

∂ αGF

∂ ln t
≡ βGF(αGF) =−2αGF(µ) , αGF =

g2
GF

4π
. (3.2)

The renormalization group equation (3.2) has the solution

ΛGF

µ
= exp

{

−
∫ αGF

1
dα

1

βGF(α)

}

=
√

αGF . (3.3)

To make contact with phenomenology we need to transform the gradient flow coupling (3.1) to an

appropriate scheme. Such a scheme is the V scheme [13]. In that scheme

ΛV

µ
= exp

{

−
∫ αV

1
dα

1

βV (α)

}

=
ΛV

ΛGF

exp

{

−
∫ αGF

1
dα

1

βGF(α)

}

. (3.4)

A solution of this equation is βV = −2αV with αV = (ΛV/ΛGF)
2 αGF = Λ2

V/µ2 = g2
V/4π . The

ratio ΛV/ΛGF = (ΛV/ΛMS)× (ΛMS/ΛGF) is known [8, 13] to be 0.731, which finally leads to

αV = 0.534αGF .

As we are left with tree-level diagrams only in the infrared regime, the long-range static po-

tential is simply given by the exchange of a single (dressed) gluon, which reads

V (r) =
1

(2π)3

∫

d3q eiqr 4

3

αV (q)

q2 + i0
≡ σ r , σ =

2

3
µ2 αV =

2

3
Λ2

V . (3.5)

0

2

4

6

8

10

12

0 20 40 60 80 100
0

2

4

6

8

10

12

0 20 40 60 80 100

α
V
/π

t/a2

α
V
/π

t/a2

Figure 2: The running αV/π as a function of t/a2 on

the 244 lattice, together with a linear fit.

In Fig. 2 we show αV/π on the 244 lat-

tice as a function of flow time t, together

with a linear fit of the form αV/π =

(12/π)σ t = (3/2π µ2)σ to the data. The

result of the fit is
√

σ = 396(11)MeV,

which leads to ΛV = 485(13)MeV and

ΛMS = 303(9)MeV, respectively. Both re-

sults are in good agreement with direct lat-

tice calculations and phenomenology. The

derivation (3.5) should not be confused with

attempts to read off the potential from the

gluon propagator in the continuum theory.
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Figure 3: The action density a4E (left panel) and running coupling αV/π (right panel) broken down by the

topological charge |Q| on the 244 lattice. |Q| runs from 0 to 16 from bottom to top. The solid curves stand

for the statistical average over all values of Q.

4. Renormalization group flow: θ against 1/g2

It is known for a long time, albeit from ‘cooling’, that the action density E tends to multiples of

the classical instanton action in the infrared regime [14]. In Fig. 3 we show the action density E (left

panel) from the gradient flow, together with the associated running coupling αV/π (right panel),

0

0.02

0.04

0.06

0.08

0.1

−15 −10 −5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

−15 −10 −5 0 5 10 15

0

0.02

0.04

0.06

0.08

0.1

−15 −10 −5 0 5 10 15

P
(Q

)

Q

P
(Q

)

Q

P
(Q

)

Q

Figure 4: The distribution of topological charge P(Q),

together with a Gaussian fit.

as a function of topological charge Q and

flow time t on the 244 lattice. The charge

Q has been computed from the field tensor

Gµν , using the field theoretic definition of

the topological charge stated in (1.1). At

large times the action density approaches

E(Q, t) ∝ |Q|, as expected, while the cou-

pling fans out like αV (Q, t) ∝ |Q| t2. We

have checked that the probability distribu-

tion of the topological charge, P(Q), is in-

dependent of flow time for t/a2 & 1. In

Fig. 4 we show P(Q) on the 244 lattice. It

turns out that P(Q) is very well described by a Gaussian distribution. The topological susceptibility

was found to be χt = (222(12)MeV)4, which is in the right ballpark.

The effective coupling constant that describes the interaction of quarks and gluons in the θ

vacuum at the scale µ = 1/
√

8 t is given by

αV (θ , t) =
1

Zθ

∫

dQeiθQP(Q)αV (Q, t) . (4.1)

At θ = 0 it reduces to αV (t) as shown in Fig. 2 and by the solid line in Fig. 3 (right panel). We

fit αV (Q, t) by a polynomial in |Q| for each value of t separately. The charge distribution P(Q) is

approximated by a Gaussian fitted to the data. The result of the Fourier transform (4.1) is shown

in Fig. 4 for both our lattices. It turns out that αV (θ , t) is well approximated by αV (θ , t)/π =

(αV (t)/π)
[

1−(αV (t)/π)(D/λ )
]λ

, with λ ≈ 0.9 on the 164 lattice and λ ≈ 0.75 on the 244 lattice.
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Figure 5: The running coupling αV/π as a function of θ for discrete values of flow time t/a2 on the 164

lattice (left panel) and 244 lattice (right panel).

At small values of αV and small flow times t, the vacuum angle θ can assume any value −π ≤
θ ≤ +π . Large values of αV , prerequisite for linear confinement, are however only accessible for

decreasingly small values of θ . The final result will be θ = 0 at αV (θ , t) = ∞. The difference

between the curves on the 164 (left panel) and 244 (right panel) lattices, notably for t/a2 & 40, can

be attributed to finite size effects. Presently it cannot be excluded that at larger t/a2 the parabolas

will continue to shrink on larger volumes.

From the fitted curves in Fig. 5 we can read off the renormalization group equation for αV (θ , t),

and the concomitant equation for θ(t). The appropriate coupling in the infrared regime is π/αV .

For small values of θ and π/αV we obtain

∂ (π/αV )

∂ ln t
≃− π

αV

+Dθ 2 ,
∂ θ

∂ ln t
≃− 1

2
θ . (4.2)

Outside this region the equations become increasingly complex. The parameter D turns out to

be in good agreement with the expected result, D = π3χt/Λ4
V ≈ 1.4, which follows from ap-

proximating the action density E(t) at large t by |Q| times the classical instanton action. The
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Figure 6: A logarithmic plot showing the flow of θ against

4π2/g2
V for different initial values of θ . The result is from the

244 lattice.

renormalization group equations

(4.2) have an infrared attractive,

confining fixed point

π

αV

= 0 , θ = 0 (4.3)

at µ = 1/
√

8 t = 0. By numeri-

cal integration we obtain the two-

parameter renormalization group

flow of θ against 4π2/g2
V sketched

in Fig. 6. The trajectories fill ex-

actly the inner area of the parabo-

las in Fig. 5. Fig. 6 shows that any

initial value of θ eventually scales

to zero at macroscopic distances,

thus providing a mechanism for

strong CP conservation.
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5. Conclusions

The gradient flow is a powerful tool for studying the long-distance properties of nonabelian

gauge theories. In particular, it allows to study the behavior of the theory and its couplings under

scale transformations. Motivated by the prospect [3] of a dynamical solution of the strong CP prob-

lem entirely from QCD, we have studied the renormalization group flow of the running coupling

and the vacuum angle θ in the SU(3) Yang-Mills theory. The main result is that θ scales to zero

in the infrared limit, driven by the confining force and the infrared fixed point at π/αV = 0. As a

result, the θ term does not lead to any observable effect in the hadronic world. Our calculations

indicate that gluonic excitations are largely responsible for the effect. Quarks, on the other hand,

are expected to decouple in the infrared limit and only renormalize θ at ultraviolet scales.

It is needless to say that the calculations have to be repeated on larger volumes. We believe that

our results are universal in the sense that αS
t→∞
∝ αV in any scheme S. But that has to be checked in

detail. Nonetheless, we dare say that there is no theoretical foundation for axions.
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