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1. Introduction

In the high-temperature region of quantum chromodynamics (QCD), one of open questions is
the fate of the U(1)4 symmetry. In the low-temperature phase, the U(1)4 symmetry is known to
be broken by a quantum anomaly which is related to topological excitations of gluon fields, e.g,
instantons. In the high-temperature region with restored chiral symmetry (in other words, above
the critical temperature, T > T.), the restoration or violation of the U(1)4 symmetry is still a long-
standing problem not only in theoretical approaches [1, 2, 3] but also in lattice QCD simulations at
Ny=21[4,5,6,7,8]and Ny =2+119, 10, 11, 12, 13, 14].

In older studies, lattice simulations reported a sizable U(1)4 symmetry breaking above the
critical temperature. However, many studies applied the staggered-type fermions, where chiral
symmetry is explicitly broken, and it was difficult to precisely measure how much of U(1)4 sym-
metry breaking is due to lattice artifacts. Recently, chiral fermions were employed to simulate
lattice QCD at high temperature [4, 5, 7, 9, 10, 12, 13] (in Refs. [12, 13], only for valence quark
sector). JLQCD Collaboration studied with Ny = 2 chiral fermions [4, 7]. In Ref. [4], we generated
the gauge ensembles with dynamical overlap fermions and applied a topology fixed approach at the
O = 0 sector. In Ref. [7], gauge ensembles are generated with the Mobius domain-wall (MDW)
fermions [15, 16], and a overlap/domain-wall reweighting technique [17, 7] was applied, where
observables measured on MDW fermion ensembles are reweighted to those on overlap fermion en-
sembles. A disappearance of the U (1)4 anomaly (at around 1.27,) was also reported in simulations
with Ny = 2 non-chiral fermions by other groups [6, 8]. In Ref. [14], they found that the U (1),
symmetry is good at 1.37; but not near 7.

In these proceedings, we report on our recent results of the observables at T = 220 MeV
such as the Dirac spectrum, U(1)4 susceptibility, screening masses from mesonic correlators, and

Table 1: Numerical parameters of lattice simulations. L> x L, and m are the lattice size and quark mass,
respectively. A?t[ 5 and x; are our results of the U (1)4 susceptibility and topological susceptibility from the
fermionic definition, respectively.

3%, am A% <a® on OV xat

243x 12 0.001  1.5(0.6) x107°® ~0

243 %12 0.0025 3.6(1.3) x107°  5.0(3.7) x10~8

243 % 12 0.00375 0.00017(7) 2.3(0.7) x1077

243x 12 0.005 0.00091(42) 9.02.0) x1077

243x 12 0.01 0.00389(92) 1.7(0.2) x107°

322x 12 0.001 1.8(1.4) x10™> 8.8(8.8) x10~!2

323 %12 0.0025 0.00017(6) 3.5(3.0) x1078

323 %12 0.00375  0.00026(8) 7.9(3.0) x1078

323x12  0.005 0.00291(188)  9.3(1.9) x10~”7

323x12 001 0.01358(263)  2.9(0.4) x107°

40° x 12 0.005 0.00785(178)  5.4(0.6) <10~

40°x 12 0.01 0.01162(140)  2.0(0.2) x107°

483 %12 0.001  22(0.9)x10°° 4.2(4.3) x10° 10

483 x 12 0.0025 0.00012(4) 4.9(4.4) x107°

483 x 12 0.00375  0.00032(12) 1.5(0.7) x1077

483 %12 0.005 0.00135(63) 2.9(1.1) x1077
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Figure 1: Spectral density p(|A|) for overlap-Dirac eigenvalues A at T = 220 MeV. Upper panel: m =
2.64 MeV. Lower panel: m =26.4 MeV.

topological susceptibility in Ny = 2 lattice QCD simulations. The simulation parameters are sum-
marized in Table 1. Our gauge ensembles are generated with the tree-level Symanzik improved
gauge action and dynamical MDW fermions. We use the gauge coupling B = 4.30 and the lattice
spacing 1/a = 2.64 GeV (a ~ 0.075 fm), which is finer than that of configurations used in the
previous works [4, 7]. We simulate lattice volumes L = 24,32,40,48, and the length of the fifth
dimension in the MDW fermion formulation is Ly = 16. The physical quark mass (as the average of
up and down quark masses) is estimated to be am = 0.0014(2) (3.7(5) MeV). Some of our results
were already reported in previous proceedings [18, 19, 20, 21].

2. Overlap Dirac spectrum

In Fig. 1, we plot spectral density of overlap Dirac eigenvalues, p(A) = (1/V)(X 6(A — 1))
for two typical ensembles. The blue and magenta bins denote the spectra on the MDW fermions
ensembles (DW) and reweighted overlap fermion ensembles (OV), respectively. At m = 2.64 MeV
for the OV ensembles, we find a suppression of both low eigenmodes and chiral zero modes.
The suppression of the low eigenmodes is related to the U(1)4 symmetry restoration in the light
quark mass region. The disappearance of the chiral zero modes is related to the suppression of the
topological susceptibility. At m = 26.4 MeV, low eigenmodes are enhanced, which is related to
the U(1)4 symmetry breaking.

3. U(1)4 susceptibility

The U(1)4 susceptibility A;_s is an order parameter of the U(1)4 symmetry breaking. This
is defined from a spacetime integral of the difference between two-point correlators of isovector-
pseudoscalar (1 = iPT¢Y5¥) and isovector-scalar (6 = Yt¢y) operators:

Aps = Xn—Js = /d“x(n“(x)n“(O) —89(x)5%(0)), G.1)

where a is an isospin index in Ny =2 QCD. The U(1)4 susceptibility in the lattice theory is defined

by a summation of low-lying eigenvalues of the overlap Dirac operator, ki(ov’m) [22]:

1 2m2(1— AL
ov _ 1
-8 V(l _m2)2 <; A"(ov,m)4 ’ 3.2)
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Figure 2: U(1), susceptibilities, A;’rvi 5 (3.2), from the eigenvalue density of the overlap-Dirac operators at
T =220 MeV.

where we set the lattice spacing @ = 1. This summation is truncated at the lowest 40 eigenvalues.!

In Fig. 2, we show the U(1), susceptibility at 7 = 220 MeV. In the light quark mass region,
we find strong suppression of the A?Y <. For example, at the lowest quark mass and L = 32, the
ratio of A7 ¢ to temperature is \/m /T =~ 5%. The volume dependence is small for L = 24-48.
The data at different volumes are consistent except for the heaviest quark mass at L = 24, whose
aspect ratio against temperature is L/L, = 2.

4. Screening mass difference from spatial mesonic correlators

The screening mass is defined by the exponential decay of spatial correlators, which may be
used to measure a violation of U (1)4 symmetry. We investigate the difference between the effective
screening masses

Amger(z) = |misr(z) - mfcr(z>’a 4.1

where m’5.(z) and m3,

scr o.r(z) are the effective screening masses at a spatial coordinate z for isovector-

pseudoscalar (1% = iy 1%Ys ) and isovector-scalar (0% = Y1¢y) operators, respectively.

In Fig. 3, we show the difference between the effective screening masses measured by the
MDW operator (without reweighting), where the horizontal axis is a dimensionless spatial distance
(zT = (n;a/N;a) = n;/N;). For the screening masses with light quark mass, we find a small value
of Amy.,(zT), which indicate the restoration of the U(1)4 symmetry and it is consistent with the
results of the U(1)4 susceptibility A;’r"_ s+ For heavy quark masses, the mass difference becomes
large, which implies the U(1)4 symmetry breaking.

5. Topological susceptibility

The topological susceptibility J; is defined as a gauge ensemble average of the topological
charge Q;:
(07)

Xt = v 5.1

!From this definition, we further apply two types of subtractions: a subtraction of the contributions from chiral zero
modes and an ultraviolet divergence (or lattice cutoff). For a justification of the zero mode subtraction, see Ref. [2, 7].
For the parametrization scheme of the lattice cutoff contribution by different valence quark masses, see Ref. [20, 21].
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Figure 3: Difference between effective screening masses (4.1) from spatial mesonic collerators for U (1)
partners at 7 = 220 MeV and L = 32. The horizontal axis is defined as a dimensionless spatial distance
zT = (n,a/N,a) = n;/N;.

For the topological charge Q,, we employ two definitions. As a fermionic definition, Q, is defined
through the index theorem for the overlap Dirac operator:

Or=ny—n_, (5.2)

where n_ are the numbers of chiral zero modes with positive or negative chirality, respectively. As
a gluonic definition, Q; is defined as a summation over spacetime x at a flow time ¢ :

1

o) = 5m

Y eYPOTr Fyy (x,1) Fpo (x,1), (5.3)

X

where F,y (x,1) is the clover-type discretization of the field strength tensor [23].2

In Fig. 4, we plot the topological susceptibility ¥, at T = 220 MeV. We show the results from
the fermionic definition (5.2) on the OV ensembles and the gluonic definition (5.3) on the MDW
ensembles, respectively. In the light quark mass region, J; is strongly suppressed with both the
definitions. Furthermore, the volume dependence between L = 24 and 48 is small. In the heavy
quark mass region, the value of }; becomes nonzero, which is in agreement with the peak structure
of the Dirac spectra in the lower panel of Fig. 1.

6. Summary and discussion

In these proceedings, we studied the high-temperature phase of QCD at 7" = 220 MeV by
using Ny = 2 lattice QCD simulations with dynamical MDW fermions. We found small values
of the U(1)4 susceptibility (3.2) and the difference of mesonic screening masses (4.1) in light
quark mass region, m < 10 MeV, which indicates the U(1)4 symmetry restoration in the chiral
limit (m — 0). Furthermore, we found strong suppression of the topological susceptibility in the
light-quark mass region. The mesonic and baryonic correlators at higher temperature were already
reported in Refs. [24, 25, 26].

2This definition is usually not an integer, but we find a well-discretized distribution of Q (¢) at t = 5.
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Figure 4: Topological susceptibilities y; at T = 220 MeV. Colored points: ¥; from the fermionic defini-
tion (5.2) on reweighted OV ensembles. Uncolored points: ¥; from the gluonic defnition (5.3) on MDW
ensembles.
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