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plain to enhance the average phase factor. In this study, we discuss the application of this method
to low dimensional QCD as a first step of finite density QCD.
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1. Introduction

The sign problem in the path integral is a numerical difficulty that appears in system with com-
plex actions. Complex action causes rapid oscillation and serious cancellation of the Boltzmann
weight in calculating the partition function, and this cancellation makes the numerical accuracy
worse. In lattice QCD at finite chemical potential µ , Fermion determinant satisfies (det D(µ))∗ =

det D(−µ∗), and generally takes a complex value. So the sign problem is one of the most important
issues because this makes it difficult to investigate finite density QCD from the first principles.

Recently, in order to avoid or evade the sign problem, some complexified variable methods
such as the complex Langevin method [1, 2, 3], the Lefschetz thimble method [4, 5, 6, 7] and the
path optimization method [8, 9, 10, 11] have been proposed. In the Lefschetz thimble method, one
complexifies the dynamical variables and give the integration path (manifold) by solving the flow
equation from the fixed point or deforming original real path by the flow equation.

On the other hand, in the path optimization method, the integration path is given by minimiza-
tion of the cost function, which represents the seriousness of the sign problem. This method has
been applied to a one dimensional integral [8], a finite density complex scalar field theory [9], and
the Polyakov loop extended Nambu-Jona-Lasinio model with and without vector type interaction
[10, 11]. In these cases, the average phase factor (APF) is enhanced significantly.

In this proceedings, we apply the path optimization method to 0+1D QCD [12] and 1+1D QCD
at finite chemical potentials as a first step towards the finite density QCD on four dimensional
lattice. It should be noted that the low dimensional QCD at finite densities have been studied
by using the Complex Langevin method (0+1D and 1+1D) [13] and by using Lefschetz thimble
method [14].

2. Path Optimization method

We consider the partition function given by the integral of the complex Boltzmann weight on
the complexified integration path z(x),

Z =
∫

CR
dNx exp(−S(x)) =

∫
CC

dNz exp(−S(z)) =
∫

CR
dNxJ(z)exp(−S(z(x))), (2.1)

where J(z) = det(∂ z/∂x) is the Jacobian. Here we note that the integral of analytic function is
independent of integration path from the Cauchy integral theorem.

To obtain the optimized integration path, we first give the integration path by a trial function
containing variational parameters, and next we evaluate the cost function which represents the
degree of the sign problem. We adopt the following cost function,

F [z(x)] =
∫

CR
dNx |J(z)exp(−S(z(x)))|− |Z | (2.2)

= |Z |{|〈eiθ 〉|−1−1}, (2.3)

where θ is the phase of the statistical weight θ = arg(J(z)exp(−S(z))) and 〈eiθ 〉 is APF. In the
third step, we optimize the variational parameters to reduce the cost function. Hence we can in-
crease APF which determines the precision in phase reweighting method. Finally, we generate field
configurations by the Monte-Carlo method on the optimized path.
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We use the neural network to represent the integration path theories with many degree of
freedom. The neural network is a powerful tool to represent any functions of many inputs. Neural
network with mono-hidden layer is composed of the input layer, hidden layer, and output layer. The
variables given to a layer are passed to the next layer after the linear and non-linear transformation,

ai = g(W (1)
i j x j +b(1)i ), yi = αig(W

(2)
i j a j +b(2)i ), (2.4)

where xi and yi are input and output variables respectively, g(x) is called activation function and
we use g(x) = tanh(x), and W,b,α are the variational parameters. By using these transformation,
any function is known to be represented in the large number limit of hidden layer units [15].

Inputs of the neural network are the real integral variables, and it is natural to take variables
before the complexification. For example, in the scalar field theory, we input the real part of
variables xi, and obtain the imaginary part from outputs of the neural network yi. For the SU(3)
gauge theory, an SU(3) link variable U is complexified to an SL(3) matrix U . So we input the
matrix elements of U and obtain the complexified link variables, U ∈ SL(3,C) as follows,

U (U) =U
8

∏
i=1

eλiyi(Re U,Im U), (2.5)

where λi are the generators of SU(3).

3. 0+1D QCD

We here discuss 0+1D lattice QCD based on the results in Ref. [12]. The action of 0+1D lattice
QCD with one species of staggered fermion consists of temporal fermion hopping terms and mass
terms,

S =
1
2

Nτ

∑
τ=1

(χτeµUτ χτ+1−χτ+1e−µU−1
τ χτ)+m∑

τ

χτ χτ , (3.1)

where Nτ is lattice size, m and µ are mass and chemical potential respectively. The partition
function is obtained as

Z =
∫

DU det(D(U)) =
∫

dU det
[
XNτ

+(−1)Nτ eµ/TU + e−µ/TU−1
]

(3.2)

XNτ
= 2cosh(E/T ), E = arcsinhm, U =U1U2 · · ·UNτ

, T = 1/Nτ . (3.3)

This theory can be reduced to a one-link variable problem by using the gauge transformation. It
should be noted that no plaquette terms appear because there is no spatial direction. Fermion
determinant becomes complex at finite chemical potential.

We can further reduce the number of variables from eight in the SU(3) link variable to two real
variables xi ∈ [0,2π] (i= 1,2) by using the diagonalized gauge fixing, U = diag(eix1 ,eix2 ,e−i(x1+x2)).
So we demonstrate the two ways of complexifying link variables. In the first way, we complexify
the variables after diagonalized gauge fixing, we complexify xi by Eq. (2.4). In the second method,
we complexify the link variable without diagonalized gauge fixing, link variable is complexified
by Eq. (2.5).
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Figure 1: Absolute value of the statistical weight distribution |JW | with the optimization (left), and imag-
inary part of the statistical weight distribution Im(JW ) with (middle) and without (right) the optimization.
Black curves show the contour of |JW |= 20. The results are calculated at µ/T = 1.0.

Let us first discuss the results of complexification after diagonalized gauge fixing. We optimize
the function z(x) by the gradient descent method to minimize the cost function. Figure 1 shows
the statistical weight, the Jacobian times the Boltzmann factor Je−S, as functions of x1 and x2 with
and without the optimization [12]. We find that the there are six separated regions having large
statistical weights, which will be discussed later. The imaginary part of the statistical weight is
suppressed by the optimization, as seen by the white color showing Im(JW ) ' 0 in the middle
panel.
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Figure 2: The average phase factor (left), the expectation value of quark condensate and quark density
(middle), and that of Polyakov loop (right).

Next, we discuss the results of Hybrid Monte-Carlo (HMC) calculation without diagonalized
gauge fixing. We generate the configurations by HMC and optimize the variational parameters
by the stochastic gradient descent method. Specifically we use ADADELTA [16] as an optimizer
to minimize the cost function evaluated using the generated configurations. Figure 2 shows APF
and the expectation value of observables as a function of µ . After some steps of optimization,
1−|〈eiθ 〉| becomes 3 to 100 times smaller than before. So we can weaken the sign problem in this
theory. The expectation values are compared with the exact solutions, and results agree with exact
results within the error.

Finally, in Fig. 3 we compare the eigenvalue distribution of the results from two different ways
of complexifications. We diagonalize the link variables U generated by HMC without diagonalized
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Figure 3: The scatter plot of eigenvalue of the link variable U . White curves represents the contour of
|Je−S| with diagonalized gauge fixing results. The results are calculated at µ/T = 1.0.

gauge fixing,

U = P diag(eiz1 ,eiz2 ,e−i(z1+z2))P−1, (3.4)

where P is a regular matrix. As a result, the real part of z1 and z2 are distributed in six separated
regions. This distribution is consistent with that with diagonalized gauge fixing which is shown by
the contour. Thus the separated regions are found to be connected by the continuous transformation
and do not cause the multimodal problem.

4. 1+1D QCD

Let us now proceed to discuss 1+1 dimensional QCD. We use one species of staggered fermion
without rooting and take the strong coupling limit. We take the Polyakov gauge without diagonal-
ized gauge fixing, where U0,x = I for xτ 6= Nτ with I being the identity matrix, and we complexify
the link variables as in 0+1 dimensional QCD but in a more symmetric form as,

Uµ,x =Uµ,x
Hµ,x(U)

3
√

Hµ,x(U)
, (4.1)

Hµ,x(U) = I +
8

∑
i=1

λiyµ,x,i(Re U, Im U), (4.2)

except for µ = 0, xτ 6= Nτ . Here yµ,x,i are the outputs of neural network, and inputs of neural
network are the real and imaginary part of the link variables.

We show the results on the 22 lattice and the bare mass is taken to be 0.1. The left panel of
Fig. 4 shows the histogram of the unitary norm defined as,

N = max
µ,x

tr(U †
µ,xUµ,x−1)2. (4.3)

The finite unitary norm means the some deformations from SU(3) are caused by the optimization.
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The right panel of Fig. 4 shows APF. Original APF of this theory is smaller than that in 0+1D
QCD, and have dip structure at finite chemical potential. By the optimization, APF can be en-
hanced. But the increase is not significant, and then the upper bound of APF may exist. In order to
confirm the latter point, we need to compare the results with that of Lefschetz thimble method and
to clarify the reasons of the existence of the upper bound in the future work.
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Figure 4: The unitary norm at µa = 0.7 (left), and the average phase factor with and without optimization
(right).

5. Summary

In the path optimization method, we can regard the sign problem as an optimization problem.
Neural network and optimization methods developed in machine learning are helpful. We apply
this method to 0+1D QCD with and without diagonalized gauge fixing. Average phase factor
becomes large and exact results are reproduced in observable calculations. Without gauge fixing,
eigenvalue distribution agrees with gauge fixed results, and the hybrid Monte-Carlo sampling has
been demonstrated to work well, while the statistical weight distribution has six separated regions
and multimodal problem can be expected. In 1+1D QCD, the average phase factor is found to
increase by the optimization, but we have not yet found the path having a large average phase
factor, e.g. larger than 0.9 in some regions of the chemical potential.
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