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Exploring the QCD phase diagram via reweighting
from isospin chemical potential
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We investigate the QCD phase diagram for small values of baryon and strange quark chemical
potentials from simulations at non-zero isospin chemical potential. Simulations at pure isospin
chemical potential are not hindered by the sign problem and pion condensation can be observed
for sufficiently large isospin chemical potentials. We study how the related phase boundary
evolves with baryonic and strange chemical potentials via reweighting in quark chemical po-
tentials and discuss our results. Furthermore, we propose and implement an alternative method
to approach nonzero baryon (and strange quark) chemical potentials. This method involves sim-
ulations where physical quarks are paired with auxiliary quarks in unphysical “isospin” doublets
and a decoupling of the auxiliary quarks by mass reweighting.
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1. Introduction

Despite the theoretical and experimental efforts of the past two decades to study the phase
diagram and the properties of QCD at finite quark densities, most of the parameter space is still
uncharted when it comes to first principles results. The main reason for this is the complex action
problem affecting QCD at non-zero baryon chemical potentials, prohibiting direct simulations of
lattice QCD. Despite the effort to overcome this problem (see [1], for reviews), there is currently no
reliable method to obtain results close to the pseudo-critical temperature at physical quark masses.

In the grand canonical ensemble, three-flavor QCD at finite quark density can be described in
terms of baryon (µB = 3[µu +µd ]/2), isospin (µI = [µu−µd ]/2) and strange (µs) chemical poten-
tials. In most of the physical systems all three chemical potentials are non-zero, while the effects

Figure 1: Conjectured phase diagram of QCD at
pure isospin chemical potential (taken from [5]).

due to non-zero µB are usually expected to dom-
inate. In contrast to QCD at non-zero µB (and
µs), QCD at pure isospin chemical potential, i.e.,
µB = µs = 0 and µI 6= 0, with mass degener-
ate light quarks has a real and positive fermionic
weight factor and, thus, permits direct simula-
tions. After the first pioneering studies [2, 3, 4],
we have recently presented the first results for
the continuum phase diagram, see Fig. 1, with
physical quark masses in a realistic three-flavour
setup [5], showing Bose-Einstein condensation
(BEC) of charged pions at large µI and small
temperatures [6] (see also Refs. [7] for further
applications of simulations at non-zero µI).

In general, it is the equation of state and the phase diagram at non-zero µB, µs and µI which
is of direct phenomenological importance. Since direct simulations are impossible, one is forced
to use indirect methods, such as the Taylor expansion method and reweighting, to take the effects
of non-zero µB and µs into account. These methods are restricted to small values of µB and µs,
rendering the important region beyond nucleon production threshold inaccessible. In this proceed-
ings article, we apply the reweighting method to the region around the µB = µs = 0 axis at zero
temperature with the aim to trace the BEC phase boundary at non-zero µB and µs. In particular, we
test two different reweighting techniques for their efficacy. First, we use a reweighting in chemical
potential (Sec. 3), starting from simulation points at non-zero µI . Secondly, we present a novel
technique (Sec. 4), which employs a reweighting in the quark mass to decouple auxiliary quarks
(forming “isospin” doublets with the physical quarks) from the theory.

2. Simulations at non-zero µI

The fermion matrix for a mass-degenerate fermion doublet of staggered quarks a and b at pure
isospin chemical potential µI is given by

Mab =

(
/DµI +mab λη5

−λη5 /D−µI +mab

)
, (2.1)
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where η5 = (−1)nt+nx+ny+nz and /Dµ is the discretized massless Dirac operator at chemical potential
µ and including stout smeared links. In QCD and our standard lattice setup and up to Sec. 4, we as-
sociate a = u and b = d and set mab = mud to its physical value. We also include a physical strange
quark at µs = 0 and use the Symanzik improved gluon action SG. For µI 6= 0, the invariance under
chiral SU(2)V rotations is broken down to a U(1)τ3 subgroup, which is spontaneously broken for
µI ≥ mπ/2 (in our convention for µI , see [8]), leading to the condensation of charged pions. The
unphysical off-diagonal terms in Eq. (2.1) break the residual U(1)τ3 symmetry explicitly. The ex-
plicit breaking serves two main purposes: (i) it enables to observe spontaneous symmetry breaking
in a finite volume; (ii) it acts as a regulator for lattice simulations in the BEC phase [2, 4]. Physical
results are obtained in the limit λ → 0.

Since simulations are done at λ 6= 0, i.e., including the symmetry breaking terms in Eq. (2.1),
the full reweighting to the target ensemble includes reweighting factors Rλ for the reweighting to
λ = 0. If O is the observable evaluated with target ensemble parameters, the reweighted result is
given by

〈O〉targ
λ=0 =

〈O RtargRλ 〉λ
〈RtargRλ 〉λ

, (2.2)

where Rtarg is the reweighting factor to target ensemble parameters. In practice, we will replace
the reweighting factor Rλ by its leading order expansion in λ , as implemented in the improvement
program for the λ -extrapolation [8]. Consequently, there will remain a residual λ -dependence for
the result on the left-hand-side of Eq. (2.2), which can be removed in terms of an extrapolation.
Note, however, that the leading order reweighting typically captures most of the effects of the full
reweighting factor, so that the effect of the remaining extrapolation is expected to be small com-
pared to the effect of the reweighting to the target ensemble. Here we will focus on the reweighting
to the target ensemble and skip the final λ -extrapolation for now.

3. Reweighting in chemical potentials

T = 0

µB

µS

µI

RµB

Rµs

?

?

vacuum π cond.µI,c

Figure 2: We simulate along the isospin direction
and employ reweighting (red) to explore the BEC
phase boundary (blue) in the vicinity of the µB =

µs = 0 axis.

We first discuss the reweighting in chemical
potentials in the vicinity of the µB = µs = 0 axis.
In particular, we are interested in the phase dia-
gram and the behavior of the BEC phase bound-
ary with µB and µs. The reweighting strategy is
sketched in Fig. 2. The ideal observable to study
the BEC phase boundary would be the pion con-
densate, but its direct evaluation in the target en-
semble at λ = 0 is difficult. Instead we focus on
the chiral condensate and the isospin density,

ψ̄ψ = ūu+ d̄d , nI = nu−nd , q̄q =
T
V

∂ logZ

∂mq
and nq =

T
V

∂ logZ

∂ µq
. (3.1)

At zero temperature, indications for the behavior of the BEC phase boundary can be obtained from
lines of constant observables due to the Silver blaze phenomenon.
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Figure 3: Overlap (left) and sign problem (right) obtained by reweighting from µB = µI = 0.

3.1 Reweighting setup

The reweighting to the target ensemble is done by reweighting either of the fermion determi-
nants in the partition function at λ = 0 to a different value of µq, starting from µu = −µd = µI

and µs = 0. To reduce numerical costs, we use the determinant reduction formalism from [9, 10],
where the reweighting factor from µ → µ ′ is written as

Rtarg(µ ′,µ) =
(

detM(µ ′)
detM(µ)

)1/4

= e−3VsLt(µ
′−µ)/4

∏
i

(
pi− eLt µ

′

pi− eLt µ

)1/4

, (3.2)

where the pi are the eigenvalues of a reduced matrix P, depending on mq, Vs is the spatial volume
and Lt is the temporal extent. Once the pi are known, the reweighting in µ is analytic and can be
done for different values of µ ′ at once. In practice, we employ the rooting to each individual term
in the product of Eq. (3.2), selecting the complex roots which ensure that the determinant is real
and positive at µB = µs = 0 and continuous along the real µB or µs axis. All results presented in
the following have been obtained on 84 lattices.

The parameter range to which the reweighting method can be applied is limited by the overlap
between initial and target ensembles and the severity of the sign problem. To estimate the overlap γ ,
we extend the argument from [11, 12] to complex reweighting factors. Considering a sorted set of
reweighting factors Ri (|R1| ≥ . . .≥ |RN |), which are normalized, ∑i |Ri|= 1, we define γ implicitly
via ∑

Nγ/2
i=1 |Ri|= 1− γ/2. If γ = 1 all configurations have similar weights, i.e., the overlap is large.

If only a few configurations effectively contribute γ will be close to zero and expectation values
can be biased. The severeness of the sign problem can be assessed from the phase fluctuations of
the reweighting factor R = |R|eiφ , cos(2φ) = ReR2/|R|2. Values close to unity indicate small phase
fluctuations, whereas small values indicate a severe sign problem. Both quantities are shown for
the reweighting from µB = µI = 0 to µB, µI 6= 0 in Fig. 3. In the following we only present results
with γ > 0.5 and where the partition function is real and positive, another indication that the sign
problem is under control.

3.2 Results

We will first discuss the results obtained at non-zero µs. The reweighted results for the strange
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Figure 4: Effect of µs on the 〈s̄s〉 (left) and 〈ψ̄ψ〉 (right) for different values of µI (colour code). The dashed
line on the left indicates the limit for kaon condensation [13].

quark and chiral condensates are displayed in Fig. 4. For all values of µI the strange quark conden-
sate drops significantly for µs > 0.6 ·mK , which could be an indication for a phase transition. The
chiral condensate is mostly unaffected by µs. In [13] it has been proposed that the onset of kaon
condensation depends on µI and does not happen for µS < 0.865 ·mK , indicated by the dashed line
in Fig. 4. Unfortunately, reweighting looses its efficacy in this region. It might be that our signal is
a precursor effect to kaon condensation due to finite size and temperature effects, but this will have
to be clarified in the future. Below µs = 0.6 ·mK we clearly do not observe any effect of µs on the
BEC phase boundary.
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Figure 5: The chiral condensate at non-zero µB.
We combined several auxiliary ensembles in this
plot, only considering the ones with sufficient
overlap with the target ensemble and a reasonably
controlled sign problem.

The results for the chiral condensate
reweighted to non-zero µB are shown in Fig. 5.
In our setup an indicator for the BEC phase
boundary is a strong decrease of the chiral con-
densate. We observe that the surface of strong
depletion of the condensate (the purple region)
bends towards larger values of µI in Fig. 5 and
we interpret this as an indicator for a similar
bend of the BEC phase boundary. It is unex-
pected that the chiral condensate also shows a
slight fall off across the line from (µB = 0, µI =

mπ/2) to (µB = 3mπ/2, mI = 0). Due to the Sil-
ver Blaze phenomenon one does not expect a de-
pletion of the chiral condensate outside of the
BEC phase up to µB ≈ mN (the mass of the nu-
cleon). We are currently investigating the origin
of this, likely unphysical, behavior.

4. Reweighting in quark masses

In addition to reweighting in chemical potentials from finite µI , we propose a novel reweight-
ing direction to access the phase diagram. The phase diagram with N f = 2+1 dynamical flavours
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can, in principle, be accessed by simulating with a N f = 2+2+1 setup, including light quarks at
the desired quark chemical potentials, accompanied by auxiliary “isospin” partners with negative

µ

ma

∞

∞
mud

0 µI,c

µB = mN

Rm

vacuum

π cond.

baryons

mixed?

Figure 6: A possible scenario for how the quark masses
could affect the phase diagram at finite quark chemical
potential µ . Changes in the auxiliary quark mass(es) in-
fluence both the BEC (blue) and baryon creation (green)
phase boundaries. The red arrows indicate the reweight-
ing direction.

chemical potential. The latter are decou-
pled from the theory by increasing their
mass ma (initially ma = mud , for instance)
via reweighting and taking the limit ma→
∞. The underlying idea and the possible
phase diagram for different values of ma

is depicted in Fig. 6.
The reweighting factor for altering

one of the quark masses of the quarks in
an isospin doublet, here the one with neg-
ative chemical potential, from mud to ma

is given by

Rtarg =

[
det( /D−µI +ma)

det( /D−µI +mud)

]1/4

. (4.1)

Since /D−µI is a non-normal operator, the reweighting to different values of ma can again be done
analytically when we know the left and right eigenvectors of /D−µI . The non-normality also needs
to be taken into account when computing observables [14].

We observed that adding light quarks induces drastic changes in the system, strongly affecting
the lattice spacing, mπ and the value of ψ̄ψ . To improve the overlap between initial and target
ensembles, we tuned the masses of the isospin doublets in the Silver blaze region such that the
values of ψ̄ψ roughly match those of the N f = 2+1 ensemble, making them about 11 times heavier.
We then reweight the masses of the two physical quarks (the ones with positive chemical potential)
to those of the target ensemble and decouple the auxiliary quarks by increasing ma. Preliminary
results for overlap and sign problem for such a reweighting are shown in Fig. 7. Apparently there
is an optimal overlap between initial and target ensemble when varying ma by a factor between one
to three. As expected, the sign problem reappears and becomes stronger with increasing ma.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
µI

0.0

0.2

0.4

0.6

0.8

1.0

co
n

fi
gu

ra
ti

on
ov

er
la

p
γ

1

2

3

4

5

6

7

8

9

10

m
′ a/
m
a

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
µI

0.0

0.2

0.4

0.6

0.8

1.0

R
-fl

u
ct

u
at

io
n

s
co

s2
φ

1

2

3

4

5

6

7

8

9

10

m
′ a/
m
a

Figure 7: Overlap (left) and sign problem (right) in case of the mass reweighting described in the text.
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5. Summary and Outlook

In this proceedings article, we presented results for the pion condensation phase boundary for
small baryonic and strange chemical potentials obtained from reweighting in chemical potentials
from ensembles generated at finite isospin chemical potentials. The results are still in a preliminary
stage and have been obtained on small (84) lattices. We observed an unexpected behavior of the
chiral condensate at non-zero baryon chemical potential and we are currently investigating possible
causes. One issue concerns the ambiguity in evaluating the phase factor of the rooted reweighting
factor of Eq. (3.2). A new method to avoid the rooting has been proposed recently [15] and we
plan to test it in the future. In addition, we proposed a novel reweighting in the masses of auxiliary
quarks to study QCD at finite quark chemical potentials and presented first tests of this method.
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