
P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
0

Schwinger-Keldysh formalism of Lattice Gauge
Theories

Hirotsugu Fujii, Hiroki Hoshina∗ and Yoshio Kikukawa
Institute of Physics, the University of Tokyo,
Tokyo 153-8902, Japan
E-mail: hfujii@phys.c.u-tokyo.ac.jp, hoshina@hep1.c.u-tokyo.ac.jp,
kikukawa@hep1.c.u-tokyo.ac.jp

We formulate the Schwinger-Keldysh formalism of lattice gauge theories by constructing the
appropriate unitary transfer matrices in the forward and backward real-time directions for gauge-
link and Wilson-Dirac fields. We can then define spectral functions at a finite lattice spacing and
also formulate the linear response theory. For a real scalar field in the weak-coupling limit, the
two-point Green’s function on closed time lattice path was derived analytically and the spectral
function was examined numerically. The result is consistent with the continuum theory.
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1. Introduction

The Schwinger-Keldysh (SK) formalism[1, 2] is a general framework to treat the real-time
dynamics of quantum systems. An initial pure or mixed state is described by the density operator
and a correlation function of time-dependent observables in Heisenberg picture is given by the trace
formula with the initial density operator inserted, which in turn is expressed by path-integration
along the closed time-path. The SK formalism, in principle, can be applied in various situations
such as out-of-equilibrium and/or background-dependent processes in quantum field theory. Those
includes creation and evolution of quark-gluon plasma in ultra-relativistic heavy-ion collisions,
cosmological (inflational) evolution of space-time and matter in the early universe, and so on.
Some of these processes are strongly coupled and require a certain non-perturbative treatment of
the underlying quantum field theory such as QCD and the Standard Model. It is then desirable to
formulate the SK formalism within a non-perturbative framework of quantum field theory.

Recently, the SK formalism was introduced in the framework of lattice field theory for the
bosonic scalar and gauge-link fields and was studied by Monte Carlo simulations[3, 4]. These
bosonic lattice models in the SK formalism were obtained from the original models in the Eu-
clidean / imaginary-time formalism by the simple prescription to replace the lattice spacing of
time-direction a0 to ±ia0 during the forward and backward real-time evolutions in the periodic
time-path. In the Monte Carlo simulations, the complex Langevin and Lefschetz thimble methods
were employed, trying to evade the sign problem of the lattice models.

In this talk, inspired by these works, we further develop the SK formalism in the framework of
lattice gauge theory. We first examine the SK formalism of the scalar boson theory (the λϕ 4 theory)
on the lattice in detail. We observe that the transfer operators in the forward and backward real-time
directions are unitary and Hermitian conjugate to each other, but do not commute with the transfer
operator in the imaginary-time direction. We also observe that the spectral functions can be defined
at a finite lattice spacing. We then formulate the SK formalism of SU(N) lattice gauge theory by
constructing the appropriate unitary transfer operators in the real-time directions for gauge-link and
Wilson-Dirac fields. We can then formulate the linear response theory and define Kubo’s response
functions in the framework of lattice gauge theory.

NT a0

Nβ a0

Figure 1: Closed Time Path on a lattice

For simplicity, we consider the case that the initial state is in thermal equilibrium with the
inverse temperature β . Extensions to more general initial states are straightforward. We choose the
lattice unit in the three space-like directions and denote the lattice spacing in the time-like direction
with a0. We assume that the extent of the imaginary-time direction is Nβ a0 (≡ β ) which defines
the inverse temperature, while the extent of the real-time direction is NT a0 (≡ T ). The time-like
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lattice coordinate along the closed time path is denoted in general with s = 0, . . . ,2NT +Nβ − 1,
while the imaginary and real time coordinates are denoted with τ = 0, . . . ,Nβ −1, and t = 0, . . . ,NT ,
respectively.

2. Scalar field

The SK formalism of the lattice scalar model can be defined by the following action[3, 4],

SB/SK [ϕ ] = ∑
s

∑
xxx

{
1

2∆sa0
(ϕ(s+1,xxx)−ϕ(s,xxx))2 +a0

∆s +∆s−1

2
V [ϕ(s,xxx)]

}
,

V [ϕ(s,xxx)] = ϕ †(s,xxx)[∇†
k∇k +m2]ϕ(s,xxx)+

λ
2
(
ϕ †(s,xxx)ϕ(s,xxx)

)2
, (2.1)

where the time-increment parameter ∆s is introduced as

∆s =


+i (s = 0, · · · ,NT −1)
+1 (s = NT , · · · ,NT +Nε −1)
−i (s = NT +Nε , · · · ,2NT +Nε −1)
+1 (s = 2NT +Nε , · · · ,2NT +Nβ −1)

. (2.2)

Nε = 0 in [3] and Nε = Nβ/2 in [4]. The partition function of the lattice model is given by

ZSK[β ,T ] ≡
∫

∏
s,xxx

dϕ(s,xxx)√
2π∆sa0

e−SB/SK [ϕ ] =

∫ 2NT+Nβ−1

∏
s=0

{
∏

xxx
dϕ(s,xxx)T∆s [ϕs+1,ϕs]

}
, (2.3)

where the transfer matrices, T∆[ϕ ′,ϕ ] (∆ =+i,−i,+1), are defined by

T∆[ϕ ′,ϕ ] = ∏
xxx

1√
2π∆a0

e−
{

1
2∆a0

(ϕ ′(xxx)−ϕ(xxx))2+∆a0
V [ϕ ′(xxx)]+V [ϕ(xxx)]

2

}
. (2.4)

We note that in this formulation the transfer operators, T̂∆ (∆ =+i,−i,+1), have the following
structure

T̂∆ = ∏
xxx

{
e−∆a0

V [ϕ̂(xxx)]
2 e−∆a0

π̂(xxx)2
2 e−∆a0

V [ϕ̂(xxx)]
2

}
(∆ =+i,−i,+1). (2.5)

Then the transfer operators for the real-time evolutions, T̂±i, are unitary and Hermite conjugate
each other, T̂±i

† = T̂±i
−1 = T̂∓i. These operators T̂±i, however, do not commute with the transfer

operator for the imaginary-time evolution, T̂+1, [T̂±i, T̂+1] ̸= 0. It follows that if and only if Nε = 0,
the partition function Z[β ,T ] is identical to the thermal partition function Z[β ],

Z[β ,T ] = Tr
{

T̂+1
Nβ T̂−i

NT T̂+i
NT
}
= Tr

{
T̂+1

Nβ
}
= Z[β ]. (2.6)

It also follows that when Nε = 0 the s-time-ordered Green’s functions have the following properties,

G(n)(τ1 +2NT ,xxx1; · · · ;τn +2NT ,xxxn) = G(n)
β (τ1,xxx1; · · · ;τn,xxxn), (2.7)

G(n)(t1,xxx1; · · · ; tn,xxxn) = G(n)(2NT − t1,xxx1; · · · ; tn,xxxn) [t1 > ti (i ̸= 1)], (2.8)

G(n)(t1,xxx1; · · · ; tn,xxxn) ̸= G(n)(t1 + t0,xxx1; · · · ; tn + t0,xxxn). (2.9)
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The exact analytic formula of the two-point Green’s function in the weak-coupling limit λ = 0,
which we denote with G0(s,xxx;s′xxx′), can be derived in a block-matrix form as follows:

G0(s,s′;kkk) = a0

(
∆F(t̃, t̃ ′) ∆(t̃,τ ′)

∆T (τ, t̃ ′) ∆β (τ,τ ′)

)
, (2.10)

where t̃ = 0, · · · ,2NT −1 and τ = 0, · · · ,Nβ −1, and

∆F(t̃, t̃ ′) = θ(t̃ − t̃ ′)∆̃F(t̃, t̃ ′)+θ(t̃ ′− t̃)∆̃F(t̃ ′, t̃), (2.11)

∆̃F(t̃, t̃ ′) =
1

2sinhE
(
1− e−Nβ E) {e−iE ′t e+iE ′t ′ (α2

++α2
−e−Nβ E)

+e−iE ′t e−iE ′t ′ α+α−
(
1+ e−Nβ E)

+e+iE ′t e+iE ′t ′ α+α−
(
1+ e−Nβ E)

+e+iE ′t e−iE ′t ′ (α2
−+α2

+e−Nβ E) }
, (2.12)

∆(t̃,τ ′) =
1

2sinhE
(
1− e−Nβ E) {e−iE ′te−E(Nβ−τ ′)α++ e−iE ′te−Eτ ′α−

+e+iE ′te−E(Nβ−τ ′)α−+ e+iE ′te−Eτ ′α+

}
, (2.13)

∆β (τ ,τ ′) =
1

2sinhE
(
1− e−Nβ E) {e−E|τ−τ ′|+ e−Nβ Ee−E|τ−τ ′|

}
, (2.14)

coshE −1 = 1− cosE ′ =
a2

0
2

{
∑

i
4sin2(ki/2)+m2

}
, (2.15)

α± =
1
2

(
1± sinhE

sinE ′

)
, (2.16)

t =

{
t̃ (t̃ = 0, · · · ,NT −1)
2NT − t̃ (t̃ = NT , · · · ,2NT −1)

. (2.17)

2.1 Spectral function at a finite lattice spacing

The spectral function associated with a certain local observable Ô(t,xxx) is defined by the Fourier
transformation of the (thermal) expectation value of the four-dimensional commutation relation
[Ô(t,xxx), Ô(t ′,xxx′)]. In the SK formalism of the lattice scalar theory, the (thermal) expectation value
of the four-dimensional commutation relation can be expressed with the two-point Green’s function
of Ô(t,xxx) by the following formula:

⟨[Ô(t,xxx), Ô(t ′,xxx′)]⟩β = G(2)
O (2NT − t,xxx; t ′,xxx′)−G(2)

O (2NT − t ′,xxx′; t,xxx). (2.18)

There is some ambiguity in doing the Fourier transformation with respect to the real-time lattice
coordinate t, t ′, because the t-time translation invariance does not hold true. We adopt here a sym-
metric prescription defined as follows:

ρ(k0,kkk) ≡ lim
NT→∞

a0

NT

∑
t=0

∑
xxx

eik0a0(t−NT /2)e−ikkk·xxx⟨[Ô(t,xxx), Ô(NT/2,000)]⟩β (NT ∈ 2Z). (2.19)
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The spectral function then has the following properties.

ρ(k0,kkk) = −ρ(−k0,kkk)∗, ρ(k0,kkk) = ρ(k0 +2π/a0,kkk). (2.20)

Thus the spectral function can be defined with a finite lattice spacing a0.
It is instructive to compute the spectral function of ϕ̂(t,xxx) in the weak coupling limit, which we

denote with ρ0(k0,kkk). Using the result of the two-point Green’s function, G0(s,xxx;s′,xxx′), obtained
in the previous section, the thermal expectation value of [ϕ̂(t,xxx), ϕ̂(t ′,xxx′)] is obtained as follows.

∑
xxx

e−ikkk·xxx⟨[ϕ̂(t,xxx), ϕ̂(t ′,000)]⟩β = a0
e−iE ′(t−t ′)− e+iE ′(t−t ′)

2sinE ′ . (2.21)

We note that the result is t-time translation invariant and independent of the inverse temperature,
β = Nβ a0, as in the continuum theory where the four dimensional commutation [ϕ̂(t,xxx), ϕ̂(t ′,xxx′)]
is a c-number. The spectral function is then obtained as

ρ0(k0,kkk) = a2
0

πδp(k0a0 −E ′)

sinE ′ −a2
0

πδp(k0a0 +E ′)

sinE ′ (2.22)

= 2π sgn(k0)δ

(
4
a2

0
sin2(k0a0/2)−

[
∑

i
4sin2(ki/2)+m2

])
, (2.23)

where δp(θ) is the periodic delta function with the period of 2π . This is consistent with the result
in the continuum theory: 2π sgn(k0)δ (k2

0 −∑i k2
i −m2).

At a finite NT , before taking the limit NT → ∞, the would-be spectral function is also well-
defined as a continuous function of k0 and satisfies the properties eqs. (2.20). For the case of ϕ̂(t,xxx)
in the weak coupling limit, ρ0(k0,kkk;NT ) is plotted in figure 2.
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Figure 2: ρ(k0,kkk;NT ) for NT = 30(left),80(right), Nβ = 8, ma0 = 0, k1a0 = 0.4267.

2.2 A strategy for the SK formalism in the framework of lattice gauge theory

Based on the above observation about the properties of the SK formalism of lattice scalar
theory, let us now discuss our strategy to formulate the SK formalism of QCD-like SU(N) lattice
gauge theory with the gauge-link field and the Wilson-Dirac fields. We first require a set of the
transfer operators,

T̂∆ ≡ T̂ G
∆ ⊗ T̂ F

∆ (∆ =+i,−i,+1), (2.24)

which satisfy the following three conditions:
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1. First, they are natural extensions of the imaginary-time transfer operator: T̂∆ |∆=+1 = T̂+1.

2. Second, they satisfy the unitarity condition up to certain similarity transformations:

T̂∆ |∆=±i = ÂÛ±i Â−1, Û±i
† = Û−1

±i = Û∓i. (2.25)

3. Finally, they commute with the imaginary-time transfer matrices up to higher order correc-
tions in the lattice spacing a0

1: [T̂+1, T̂∆ |∆=±i] = O(a0
n) (n ∈ Z+).

Given such transfer operators, T̂∆ (∆ =+i,−i,+1), we next define the partition function by

Z[β ,T ] = Tr
{

T̂+1
(Nβ−Nε ) T̂−i

NT T̂+1
Nε T̂+i

NT
}

(2.26)

and then derive the path-integral formula for the partition function (and for the Green’s functions),

Z[β ,T ] =
∫

∏
s,xxx

dUµ(s,xxx)∏
s,xxx

dψ̄(s,xxx)dψ(s,xxx)e−{SG/SK [Uµ ]+SF/SK [ψ,ψ̄;Uµ ]}. (2.27)

We mainly consider the case of Nε = 0 for simplicity in the following.

3. The SK formalism of lattice gauge theory

The imaginary-time transfer matrix of the SU(N) link field can be written in the character
expansion as follows:

T G
+1[U

′,U ] = ∏
xxx

e
−
{

∑k
2

g2 ReTr(1−U ′
k

†(xxx)Uk(xxx))+
V [U ′(xxx)]+V [U(xxx)]

2

}
(3.1)

= ∏
xxx

e−
1
2V [U ′(xxx)]∏

k

[
∑
R

dRLR
(
1/g2)TrR

{
U ′

k
†
(xxx)Uk(xxx)

}]
e−

1
2V [U(xxx)], (3.2)

where V [U(xxx)] = ∑kl
1
g2 ReTr

{
1−Ukl(xxx)

}
and Ukl(xxx) are the space-like plaquette variables. Then

we can introduce the set of the transfer matrices for the gauge-link field T G
∆ (∆=+i,−i,+1), which

satisfies the three requirements, by

T G
∆ [Us+1,Us] = ∏

xxx
e−

∆s
2 V [U(s+1,xxx)]∏

k

[
∑
R

dRLR
(
1/g2)∆sTrR

{
Uk

†(s+1,xxx)Uk(s,xxx)
}]

e−
∆s
2 V [U(s,xxx)].

(3.3)

On the other hand, the imaginary-time transfer matrix of Wilson-Dirac fermion can be written
as follows:

T F
+1[Uτ+1,Uτ ] = Aτ+1(1− Hτ+1/2)

1
1+Hτ/2

A−1
τ , (3.4)

Aτ = B−1/2
τ [(2+a0D3W )γ0]τ , Bτ = δxxx,xxx′ +a0

(
m0 δxxx,xxx′ +∑

k

1
2

∇k∇†
k

)
τ

Hτ = γ0a0D3Wτ
1

2+a0D3Wτ
.

1If the transfer operators for the real-time evolutions were defined using the Hamiltonian of the lattice model,
Ĥ ≡− 1

a0
ln T̂+1, the above property would follow immediately: T̂±i = e∓ia0Ĥ ⇒ [T±i,T+1] = 0. This would be an ideal

formulation for the SK formalism in the framework of lattice field theory. However, the explicit or implicit construction
of the lattice Hamiltonian Ĥ is complicated especially for bosonic fields like scalar and gauge link fields.
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Then we can introduce the set of the transfer matrices for the Wilson-Dirac field T F
∆ (∆=+i,−i,+1),

which satisfies the three requirements, by

T F
∆ [Us+1,Us] = As+1(1−∆s+1Hs+1/2)

1
1+∆sHs/2

A−1
s . (3.5)

From these transfer matrices, we can now define the partition function of QCD-like lattice
gauge theory in the Schwinger-Keldysh formalism as follows.

ZSK[β ,T ] = Tr{T̂+1
Nβ T̂−i

NT T̂+i
NT }

=
∫

DUDψDψe−{SG/SK [U ]+SF/SK [ψ,ψ,U ]}×
2NT

∏
s=1

{det αs∆s}−1, (3.6)

where αs∆s = [∆sD3W,s+B1/2
s As]/2. The actions of the gauge-link field and the Wilson-Dirac fields

are given as

SG/SK = ∑
s,xxx

{
K∆s [U(s,xxx),U(s+1,xxx)]+

∆s +∆s−1

2
V [U(s,xxx)]

}
, (3.7)

SF/SK = ∑
n,s,s′

ψ(s,nnn)
[
−
(

1− γ0

2

)
∇0 −

(
1+ γ0

2

)
∇†

0 +a0D3WVs,s′

]
ψ(s′,nnn), (3.8)

where K∆s =−∑k ln[∑R dR
(
LR(1/g2)

)∆s TrR{Uk(s)U
†
k (s+1)}] and Vs,s′ is defined by

Vs,s′ =

(
1+∆s

2 δs,s′ − 1−∆s
2 δs,s′+1 0

0 1+∆s−1
2 δs,s′ − 1−∆s

2 δs+1,s′

)
. (3.9)

4. Summary

We have constructed the real-time transfer matrices for the gauge-link field and the Wilson-
Dirac fields, and formulated the Schwinger-Keldysh formalism of QCD-like lattice gauge theory.
It is then possible to define spectral functions non-perturbatively at a finite lattice spacing and to
formulate the linear response theory. The authors refer the reader to [6] for detail. For a real scalar
field in the weak-coupling limit, the two-point Green’s function on closed time lattice path was
derived analytically and the spectral function was examined numerically. The result is consistent
with the continuum theory.
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