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We calculate the PCAC mass for (2+ 1) flavor full QCD with Wilson-type quarks. We adopt
the Small Flow-time eXpansion (SFtX) method based on the gradient flow which provides us a
general way to compute correctly renormalized observables even if the relevant symmetries for
the observable are broken explicitly due to the lattice regularization, such as the Poincáre and
chiral symmetries. Our calculation is performed on heavy u,d quarks mass (mπ/mρ ≃ 0.63) and
approximately physical s quark mass with fine lattice a ≃ 0.07 fm. The results are compared with
those computed with the Schrödinger functional method.
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1. Introduction

Though the quark masses are fundamental parameters of QCD, they cannot be measured ex-
perimentally since quarks are confined in hadrons. Here, non-perturbative calculation by lattice
QCD plays an important role to determine the quark masses. When we calculate the renormalized
quark mass, the PCAC mass is often used. The PCAC mass is the quark mass parameter appearing
in the PCAC relation, which is a chiral Ward-Takahashi identity given by

⟨0|
{

∂µAa
µ(x)+2m f Pa(x)

}
O(y) |0⟩+ ⟨0|δ a

x O(y) |0⟩= 0, (1.1)

where m f is the PCAC mass and δ a
x means the infinitesimal chiral transformation. Axial-vector

current Aa
µ(x) and pseudo-scalar density Pa(x) are defined by

Aa
µ(x) = ψ̄ f (x)γ5γµT aψ f (x), (1.2)

Pa(x) = ψ̄ f (x)γ5T aψ f (x), (1.3)

and O(x) is an operator which we can set arbitrarily. When we set O(y) = Pa(y) and integrate over
the spacial coordinates, we obtain a PCAC relation⟨

∂0 Aa
µ(x0)Pa(0)

⟩
=−2m f ⟨Pa(x0)Pa(0)⟩ , (1.4)

with which we can calculate the PCAC mass by

m f =−
⟨
∂0 Aa

0(x0)Pa(0)
⟩

2⟨Pa(x0)Pa(0)⟩
. (1.5)

Recently, a new use of the gradient flow method [1–4] was proposed to calculate correctly
renormalized observables [5, 6]. The new method is called Small Flow-time eXpansion (SFtX)
method. Making use of the finiteness of flowed operators, non-perturbative estimates of observ-
ables are extracted by taking a vanishing flow-time extrapolation. The SFtX method was first
applied to evaluate the energy-momentum tensor for which the explicit violation of the Poincaré
invariance on the lattice has been a hard obstacle in obtaining a non-perturbative estimate [7, 8].

Because the SFtX method is generally applicable to any observables including chiral observ-
ables [6], we are applying it to QCD with dynamical quarks [8, 9]. In this paper, we study the
PCAC mass by the SFtX method in QCD with (2+1)-flavors of improved Wilson quarks.

2. SFtX method

In this study, we adopt the simplest gradient flow for the gauge field [2]:

∂tBµ(t,x) = DνGνµ(t,x), Bµ(0,x) = Aµ(x), (2.1)

where the field strength Gνµ and the covariant derivative Dν are defined in terms of the flowed
gauge field Bµ . The flow equations for quarks are given by [4]:

∂t χ f (t,x) = D2χ f (t,x), χ f (0,x) = ψ f (x), (2.2)

∂t χ̄ f (t,x) = χ̄ f (t,x) ⃗D 2, χ̄ f (0,x) = ψ̄ f (x), (2.3)

1
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with Dµ χ f (t,x) =
(
∂µ +Bµ(t,x)

)
χ f and χ̄ f (t,x) ⃗Dµ = χ̄ f (t,x)

(
⃗∂µ −Bµ(t,x)

)
.

In terms of the flowed fields, the correctly renormalized axial-vector current and pseudo-scalar
density in the MS scheme at µ = 2 GeV is given by [6]:

Aa
µ(x) = lim

t→0
Aa

µ(t,x) = lim
t→0

cA(t)φ f (t) χ̄ f (t,x)γ5γµT aχ f (t,x), (2.4)

Pa(x) = lim
t →0

Pa(t,x) = lim
t→0

cS(t)φ f (t) χ̄ f (t,x)γ5T aχ f (t,x), (2.5)

where the matching coefficients cA(t),cS(t) and fermion wave function renormalization factor φ(t)
are

cA(t) =
{

1+
ḡ2(µ ′)

(4π)2

[
−3

2
+

4
3

ln432
]}

, (2.6)

cS(t) =
{

1+
ḡ2(µ ′)

(4π)2

[
4
(
ln
(
2tµ ′2)+ γE

)
+8+

4
3

ln432
]}

m̄ f (µ ′)

m̄ f (2GeV)
, (2.7)

φ f (t) =
−6

(4π)2t2
⟨

χ̄(t,x)
↔
/Dχ(t,x)

⟩ , (2.8)

where ḡ(µ ′) and m̄(µ ′) are running coupling and running mass in the MS scheme at the renor-
malization scale µ ′(t), and γE is the Euler-Mascheroni constant. Then, the PCAC mass is given
by

m f = lim
t→0

m f (t) =− lim
t→0

cA(t)cS(t)φ2
f (t)

⟨
∂0 Aa

0(t,x0)Pa(t,0)
⟩

2c2
S(t)φ2

f (t)⟨Pa(t,x0)Pa(t,0)⟩
. (2.9)

Final results of m f should be independent of the scale µ ′(t) as far as it is O(1/
√

t) to preserve
the quality of the perturbation theory. A conventional choice is µ ′ = µd(t) ≡ 1/

√
8t, which is

a natural scale of flowed observables because the gradient flow smears the fields over a physical
extent of ∼

√
8t [2]. Recently, a new choice was proposed by Harlander et al. as µ ′ = µ0(t) ≡

1/
√

2eγE t [10]. Because µ0 ≃ 1.5µd , we expect that, in asymptotically free theories, the range of t
in which the perturbative expansion is well applicable is extended towards larger t with the µ0-scale
than the µd-scale. In a study of Ref. [11] on the energy momentum tensor and chiral observables in
finite-temperature QCD, we found that the wider range of t with the µ0-scale is helpful in reducing
systematic uncertainties from the t → 0 extrapolation. We test the µ0-scale also in this study.

We evaluate Eq. (2.9) non-perturbatively by performing lattice simulations. The original pro-
cedure of the SFtX method is to take the continuum limit a → 0 first, then the leading small-t
correction to the flowed PCAC mass will be m f (t) = m f + tA+O(t2), where A is the contamina-
tion from dimension-five operators. In Refs. [8, 9], an alternative procedure to take t → 0 limit
before the continuum limit was proposed. To the leading order of O(a2) we will have additional
contaminations like

m f (t,a) = m f (t)+O(a2/t, a2T 2, a2m2, a2Λ2
QCD). (2.10)

Among the O(a2) terms, the term O(a2/t) is singular in the t → 0 extrapolation. We may avoid this
difficulty by identifying a range of t, “linear window”, a range of t in which terms like O(a2/t) and

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
1

Calculation of PCAC mass with Wilson fermion using gradient flow Atsushi Baba

 60

 65

 70

 75

 80

 0  10  20  30  40  50

P
C

A
C

 m
as

s 
[M

eV
]

x0

flowtime=0.5
flowtime=1.0
flowtime=1.5
flowtime=2.0

 100

 105

 110

 115

 120

 125

 130

 135

 0  10  20  30  40  50

P
C

A
C

 m
as

s 
[M

eV
]

x0

flowtime=0.5
flowtime=1.0
flowtime=1.5
flowtime=2.0

Figure 1: PCAC mass of u quark (left) and s quark (right) as function of the Euclidean time x0, at flow-
time t/a2 = 0.5 (violet), 1.0 (green), 1.5( cyan) and 2.0 (yerrow). The µ0-scale was adopted. Vertical lines
indicate the range of constant fit. Fit range is the same for all flow-times. Errors are statistical only, estimated
by the jackknife method.

O(t2) are not dominating, and taking a t → 0 extrapolation using the data in the linear window. We
may then evaluate the RHS of Eq. (2.9) by succeeding a→ 0 extrapolation to remove the remaining
O(a2T 2, a2m2, a2Λ2

QCD) lattice artifacts. We may check the validity of the linear windows by
performing non-linear fits including O(a2/t) and O(t2) terms. The difference between the linear
and non-linear fits gives an estimate of the systematic error due to the fit ansatz. See Ref. [8] for
more details.

3. Lattice Setup

We study (2+1)-flavor QCD adopting a non-perturbatively O(a)-improved Wilson quark ac-
tion and the RG-improved Iwasaki gauge action. We choose a set of CP-PACS+JLQCD configura-
tions generated at β = 2.05 corresponding to a ≃ 0.07 fm, degenerate u, d quark mass correspond-
ing to mπ/mρ ≃ 0.63, and almost physical s quark mass corresponding to mηss/mϕ ≃ 0.74 on a
283 ×56 lattice [12]. At this simulation point, the O(a)-improvement of axial-vector current cA is
culculated by CP-PACS/JLQCD and ALPHA Collaborations as cA = −0.0272(18) [13]. We em-
ploy the 5-loop order β -function [14] and anomalous dimension [15] to calculate running coupling
and running mass in matching coefficients cA(t) and cS(t).

In the study of Ref. [12], PCAC masses at each simulation points have been calculated by the
Schrödinger functional method. The bare PCAC quark masses at the simulation point of this study
using the same configurations are amud = 0.02105(17) and ams = 0.03524(26), which correspond
to

mSF
u = 82.3±4.1, mSF

s = 137.9±6.8, (3.1)

in MeV unit.

4. Numerical results

In Fig. 1, we show the PCAC mass for u and d quarks computed with the µ0-scale as function

3
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Figure 2: PCAC mass of u quark (left) and s quark (right) as function of the flow-time time t/a2. Red
diamonds and black circles are the results of µd- and µ0-scales, respectively.
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Figure 3: PCAC mass of u quark (left) and s quark (right) as function of flow-time. The µ0-scale is
adopted. Vertical lines indicate the linear window we adopt. We take t → 0 extrapolation by a linear fit
(red) and estimate the systematic error by the difference from the result of non-linear fit (blue). The violet
diamond at t/a2 ∼ 0 is the PCAC mass evaluated by the Schrödinger functional method [12].

of Euclidean time at four different flow-times. We perform constant fits at each flow-time within
the range indicated by the vertical lines. We use the same fit range for all flow-times. The results
of the fits are shown by colored bands. The errors of the constant fits are statistical only, estimated
using the jackknife method.

In Fig. 2, we show the PCAC mass as function of flow-time. Red diamonds and black circles
are the results with µd- and µ0-scales, respectively. We see that, with the conventional µd-scale, it
is not well unambiguous to identify a linear window due to the bend at large t, and thus the t → 0
extrapolation is sensitive to the choice of linear window. On the other hand, with the µ0-scale, we
see a linear behavior in a wider range of t, which enables us to carry out a much more stable and
reliable t → 0 extrapolation of Eq. (2.9). We thus adopt the µ0-scale to calculate the PCAC masses.

The results of PCAC masses with µ0-scale are summarized in Fig. 3 as function of flow-time
t/a2 for the u quark (left panel) and for the s quark (right panel). We identify linear windows
as follows: First of all, we require the flow-time to satisfy a ≤

√
8t ≤ min(Nta/2,Nsa/2), i.e.,

the smearing range
√

8t by the gradient flow should be larger than the minimal lattice sepatration

4
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to make the smearing effective, and smaller than the half of the smallest lattice extent to avoid
finite-size effects due to overlapped smearing. We then look for a range of t in which terms linear
in t look dominating, and try linear extrapolation with various choices of the fitting range. We
then select a (temporally) best linear fit whose fitting range is the widest under the condition that
χ2/Ndof is smaller than a cutoff value. In this study, due to limitation of the statistics, we disregard
correlations among data at different t. Thus the absolute value of χ2/Ndof does not have a strong
sense — we vary the cutoff value widely. In this study, consulting the stability of the fit results, we
choose 1.0 as the cutoff value for PCAC mass. The linear window we adopt is shown by the two
vertical lines in Fig. 3.

To confirm the validity of the linear window and to estimate a systematic error due to the fit
ansatz, we also make additional non-linear fit of the form m f (t,a) = m f + tA+ t2B+ a2

t C, using the
data within the linear window. Results of linear and non-linear fits are shown by red and blue lines
in Fig. 3. We adopt the results of the linear fits as central values and take the difference between
the two fits as an estimate of the systematic error due to the fit ansatz. Our results of the PCAC
masses are

mSFtX
u = 79.14±0.19, mSFtX

s = 133.81±0.24, (4.1)

in MeV unit, where statistical error and systematic error due to fit ansatz are included.

5. Summary and outlook

We studied PCAC mass in lattice QCD with (2+1)-flavors of dynamical Wilson quarks. Non-
perturbative renormalization is carried out by the SFtX method based on the gradient flow. Our cal-
culation was performed at heavy u, d quarks mass (mπ/mρ ≃ 0.63) and approximately physical s
quark mass on a fine lattice with a ≃ 0.07 fm. As the renormalization scale in the SFtX method, we
adopt the recently proposed µ0-scale. We found that the µ0-scale is helpful to reduce uncertainty
in the t → 0 extrapolation.

Our results for the PCAC masses for u (or d) quark and s quark are given in Eq. (4.1). These
are consistent with the results of conventional Schrödinger functional method, Eq. (3.1), obtained
on the same configurations. By virtue of the gradient flow, statistical error is well suppressed
compered with the results of the Schrödinger functional method.

We are extending the study to (2+ 1)-flavor QCD with physical u, d and s quarks [11]. To
obtain final results, we also have to repeat the calculation at different lattice spacings to carry out
the continuum extrapolation.
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