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EQCD is a 3D bosonic theory containing SU(3) and an adjoint scalar, which efficiently describes
the infrared, nonperturbative sector of hot QCD and which is highly amenable to lattice study. We
improve the matching between lattice and continuum EQCD by determining the final unknown
coefficient in the &'(a) matching, an additive scalar mass renormalization. We do this numerically
by using the symmetry-breaking phase transition line of EQCD as a line of constant physics. This
prepares the ground for a precision study of the transverse momentum diffusion coefficient C(g )

within this theory.
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1. EQCD as an effective theory of hot QCD

Quantum Chromodynamics (QCD) is an asymptotically free theory, therefore it should be-
come perturbative at sufficiently high temperatures. However, comparisons of perturbative calcu-
lations, for instance the pressure [1] with its nonperturbative lattice results [2, 3] show a quite big
discrepancy even at high temperatures. The reason for this peculiar behavior lies in the highly
occupied gluon-0-mode at high 7' [4]. Based on that, one can construct an effective theory that iso-
lates the nonperturbative contribution and integrates out all other degrees of freedom. This theory
is called Electrostatic Quantum Chromodynamics (EQCD) and was first proposed by Braaten and
Nieto [5]. Since it only treats the gluon-0-mode dynamically, it lives in three spatial dimensions.
Its continuum action reads

SEQCD,c = / d’x <2;2TrFifFif +TrD'®D'® + mi Trd? + A (Trd>2)2> , (1.1)
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with the modified gauge coupling g%d, the adjoint scalar field ® that is a remnant of the A°-field,
its mass sz and its quartic self-coupling A. The matching calculation that connects the full QCD
parameters temperature 7 and number of flavors Ny to the effective field theory parameters g%d,
A and m3,; was carried out in [6, 7] up to at least &(g*). EQCD lattice simulations have deliv-
ered a variety of high-precision results in hot QCD thermodynamics, for instance string tension,
correlation lengths and quark number susceptibility [7, 8, 9].

Furthermore, it has been shown by Caron-Huot that EQCD also describes the interaction of a
jet with a hot medium up to subleading accuracy [10], which opened the gate for a precise, first-
principles prediction of the jet-broadening coefficient § from the lattice. Unfortunately, Caron-
Huot also found that a purely perturbative computation does not provide converging results and
nonperturbative methods are necessary, again. A first, promising attempt at a lattice calculation for
g has been made in [11]. The used lattice action is equivalent to

Skaepr =B Y (1-40y) +2 Y Tr (cb{(x) —an(x)Ui(x)an(x+ai)Uif(x))

X, i>j

+y (z2 (y+ 8y) Trd2 (x) + Z4 (x + 8x) (Tr@f(x))z) , (12)

where the lattice versions of the continuum parameters § = 6/g3,a, x = 1 /g3, and y = m3, (i =
g%d) / gg‘d appear. A continuum limit was not yet provided in [11] since EQCD suffers from system-
atic errors linear in the lattice spacing a, stemming from the lattice-continuum-parameter matching.
Nearly all &'(a) errors have been removed analytically [12]. The mass squared parameter y, how-
ever, receives ¢ (a)-corrections up to three-loop order in lattice perturbation theory. An analytical
determination of this last missing contribution is therefore prohibited by sheer complexity of the
calculation.

In this work, we developed a numerical algorithm to determine this last contribution. Briefly
summarized, we improve all parameters other than y to ¢ (a)-accuracy. Linear-in-a behavior in
a fit of a line of constant physics must therefore stem from the y-renormalization. We utilize the
phase transition of EQCD as the line of constant physics. In the physically relevant parameter
range, this transition is of first order, which makes the determination of the spot of the phase
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transition especially hard. The application of standard techniques like multicanonical reweighting
is numerically extremely costly in this scenario [13]. Consequently, we developed an alternative
method in order to efficiently determine the spot of a first-order phase transition on the lattice.

2. Method

EQCD has two phases, in which the Z(3)-symmetry is either intact or spontaneously broken.
These are indicated by the order parameter Tr®* = 0 in the symmetric phase and by Trd> # 0
in the broken phase respectively. For the physically interesting values of x, these two phases are
separated from each other by a first-order phase transition [13].

We developed a new method in order to determine the spot of a first-order phase transition
on the lattice precisely. Conventional methods like multicanonical reweighting rely on supporting
the entire system to tunnel from one to the other phase. Unfortunately, if tunneling is as heavily
suppressed as in the present case, multicanonical reweighting will turn out to be rather ineffective
[13]. If we generated a lattice configuration in which both phases coexisted and we wondrously
guessed the critical value of y at given self-coupling x, we would see that, apart from Brownian
motion, no phase would expand at the expense of the other. This leaves us with two major questions
we would like to address in the following:

e How to generate these configurations?

e How to tune the mass towards its critical value for given x?
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(a) Establishing coexisting phases by temporarily intro- (b) Tuning the mass towards criticality.

ducing a space-dependent mass and gradually shrinking
its amplitude.

Figure 1: Two stages of determining ;.

For the generation of the special configurations, we temporarily introduce a space-dependent
mass
y(Z) = Yerit,est + Ay COS(ZTCZ/LZ) 5 (21)

where Ay has to be taken such that the values yeit o5t == Ay are outside the metastability window in
the symmetric (broken) phase. After thermalization, we gradually shrink Ay — 0, as depicted in
Fig. 2(a). Note that in Trd? with averaged transversal directions, the phase transition can also be
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spotted although it is not the true order parameter. We used it nevertheless since it leads to a more
stable phase discriminator.

Already during that process, we have to start tuning y towards its critical value. One possible
way to do so is

1 2 2
3, TP —Trd
Vv Zx symm 05) 7 2.2)

Trd? Trd?2

brok symm

YL,new = YL,old T CB * (

where cp is a small coefficient steering the strength of the adjustment, Tr®2 , and Trégymm are
the values that Tr®? takes in the particular phase, extracted from separate simulations close to,
but not necessarily right on top the critical point. By comparing results at different values of cg,
it was verified that this insertion did not introduce artificial correlations spoiling the result. Note
also that although Tr®? still contains &(a)-errors, the difference of two Tr®2-operators is free of
O (a)-errors. If our initial mass yp, oiq is larger than ycy, then the symmetric phase is favored and
it expands at the expense of the broken phase, as can be seen in Fig. 2(b). According to Eq. (2.2),
this evokes lowering the mass and vice versa for the opposite case.

The motion of the phase boundary is driven by a net force of surface area times the free energy
difference of the phases AF. At small y — yi(, it is a valid approximation to truncate a polynomial
series in y — y¢ri¢ at linear order, leading to agreement of the value where y maintains stability and
Yerit- However, if d>F /dy?, the coefficient of the leading truncation error, becomes large, higher-
than-linear orders of the series expansion might significantly bias the result, which we explicitly
ruled out for our simulations by doubling ¢g and not observing any significant changes in our
results.

3. Results

This procedure gives us a tool to efficiently determine y at given x and lattice spacing g%da.
Repeating this calculation at different lattice spacings g%da, we can fit the & (a)-behavior of y; for
several values of x. This is done by plotting ycm(g%da) and extracting the counterterm as the slope
of a fitted polynomial at g%da =0, as illustrated in Fig. 2. In principle, the slope could be measured
by a common polynomial fit. However, constrained curve fitting provides a possibility to include
our knowledge about the convergence of the perturbative series into that result [14].

We know parametrically that the &'(a)-counterterm has the shape [15]

6y 3loop

=% (x) =A+Bx+Cx*+Dx’. (3.1
8344

Therefore, determining the counterterm for at least 5 different values of x allows a grand fit to the
given form. Simulation parameters and results can be found in Tab. 1. The grand fit has been
performed in Fig. 3, where we have additionally determined the value of the purely scalar contri-
bution D in a purely scalar computation and included it into the grand fit, again via constrained
curve fitting [14]. The situation for the purely scalar case is somewhat different because the phase
transition is of second order there, which requires a different machinery for the determination of
the 0 (a)-term. For details, we refer to App. A in [16]. The purely scalar coefficient amounts to

mp
=2 = 0.0151(55). (3.2)
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Figure 2: Generic example for determination of %, in this case at x = 0.08896.
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All self-couplings x in Tab. 1 are in the first-order regime. The first three correspond to phys-
ical full QCD scenario at temperatures 7' = 1 GeV, 500MeV, 250MeV and numbers of massless
fermion flavors Ny = 4,3,3. The last two have no full QCD counterpart but help to constrain the
fit over a wider parameter window.

X Yerit, cont Oy 3loop / 8 %da
0.0463596 0.9293(13) —0.467(19)
0.0677528 0.67627(85) —0.298(10)

0.08896 0.54092(76) | —0.1750(74)
0.13 0.4043(18) —0.037(18)
0.2 0.2961(15) 0.004(15)

Table 1: Results of our five EQCD simulation sets.

The grand fit in fig. 1 leads to the resulting 3-loop-counterterm

5)’ 3loop

O (x) = 0.0151(55) x° —31.8(28) 4> + 10.80(74) x — 0.886(41) (3.3)
8344

with a plausible value of x2.

We see that neither the value nor the error of the cubic coefficient changed. This is a result from
the small relative error of the scalar coefficient that is exceeded by all other errors of full EQCD
simulations. This also explains why the value of the cubic coefficient was left unchanged by the
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Figure 3: Grand fit of % (x).
344
COV(C,’,CJ‘) Co C; (6 C3
Co 0.001700 —0.02997 0.1101 —3.563-10°8
C —0.02997 0.5451 —2.046 1.129-10°°
(0 0.1101 —2.046 7.899 —1.079-107?
Cs —3.563-107% 1.129-107° —1.079-10°  3.025-107

Table 2: Covariance matrix of the grand fit.

grand fit. For a precise determination of the errors at any desired x, we report the full covariance

matrix in Tab. 2. The error band in Fig. 3 also requires information from the full covariance matrix.
Further interesting information on the EQCD phase transition, eg. on the updated EQCD phase

diagram, the strength of the transition and the Tr®?-operator improvement, can be found in [16].

4. Conclusions and Outlook

In this work, we determined the last missing & (a)-improvement in EQCD. A direct, analytical
computation is prohibited by sheer complexity, due to the ¢'(a)-term arising at up to three loops
in lattice perturbation theory. A numerical technique was developed to efficiently determine the
location of a first order phase transition. This allowed us to obtain the &'(a) behavior from fitting
to a line of constant physics, which was provided by the location of the phase transition at different
lattice spacings g%da. Repeating this calculation at several self-couplings x allowed a grand fit to
the parametrically known form of the three-loop counterterm.
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Having the expression of the three-loop counterterm in hand, we are now able to study hot
QCD free from ¢'(a) errors. In particular, a computation of C(b, ) and its second moment, g,
is planned. With the improvement available, the leading error in these quantities is down to
O(a*/ bi), which helps especially at small impact parameters b, and makes a continuum limit
feasible.
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