
P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer

Eric B. Gregory∗†

Bergische Universität Wuppertal & Jülich Supercomputing Centre
Institute for Advanced Simulation, Forschungszentrum Juelich, Wilhelm-Johnen-Strasse,
52425 Juelich, GERMANY
E-mail: e.gregory@fz-juelich.de

Modular supercomputers contain heterogeneous computing resources on which the user can al-
locate a hardware mix meeting the demands of the calculation. I discuss motivations for gen-
eralizing QCD simulations for use on modular supercomputers, and identify possible models of
LQCD simulations suitable for such an environment. I introduce QMOD, a system of libraries in
development to enable task-parallelization of existing lattice QCD simulation codes for modular
systems. The Jureca cluster at the Jülich Supercomputing Centre serves as a test bed for modular
supercomputing strategies.

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

∗Speaker.
†E. B. Gregory is supported by Deutsche Forschugsgemeinschaft grant SFB TRR 55.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:e.gregory@fz-juelich.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

1. Modular Supercomputing – an Introduction

In the past two decades increasing parallelism has driven vast growth in computing power.
Fields like lattice QCD with large data-parallel codes have demonstrated particularly impressive
performance gains. In other fields, data and kernels may be more varied and parallelization boosts
more moderate.

Amdahl’s Law limits the scalability of any calculation, with less-parallelizable elements of the
calculation imposing a larger bottleneck as the number of parallel tasks increases. In some cases
the less-scalable elements would perform better with a different parallelization scheme, or be better
suited to different hardware.

A modular supercomputer has different types of computing resources networked together such
that a user can allocate a heterogeneous mix of resources, tailored to the specific problem. Different
kernels can be assigned to their optimal hardware within a single parallel job. Modular supercom-
puters are in development and use at the Jülich Supercomputing Centre (JSC). Building from ideas
and prototypes developed in the DEEP Projects[1], the Jureca machine has “cluster” and “booster”
modules, based on Intel Haswell and Knights Landing (KNL) nodes, respectively. They can be
used in a common parallel job as described below in Section 4.

Juwels, the flagship machine at JSC has been designed from the start as an evolving modular
supercomputer. It currently has a cluster module of 2271 Intel Skylake compute nodes. In 2020 this
will be joined by a booster module of GPU accelerated nodes. The machine will continue to evolve
over the coming years with additional modules, including a quantum computing device and a neu-
romorphic module, with architecture inspired by biological neurons. Figure 1 shows Juwels with
some expected modules. Future modular supercomputers may include network-attached memory
or GPU network-attached accelerators, both without a host CPU. This disaggregation-of-resources
permits the user finer control over resource allocation.

Figure 1: Projected Juwels supercomputing modules. Figure from [2].

2. QCD & Modular Supercomputing

The homogeneity of LQCD data allows near perfect weak scaling of a Dslash kernel up to
more than a million threads distributed across MPI tasks. It may seem then that there is little point

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

to pursue schemes beyond this simple data-parallelism and the embarrassingly parallel nature of
measurement on a gauge ensemble or multiple Markov chains. However, the advent of large mod-
ular systems should lead us to consider whether the workflow of LQCD could present unexploited
task-based concurrencies.

There is an additional bonus from considering more task-oriented parallelization. Even in
a wholly homogeneous cluster, different functional tasks could be assigned to quasi-independent
groups of nodes. While we may not be able to tailor the architecture for each task in this case, we
could still tune the number of nodes assigned to each group according to workload and paralleliz-
ablity. With a sufficiently fast network, efficiency should improve.

Users of clusters with GPU accelerators already take advantage of the heterogeneous nature
of the nodes with libraries like QUDA [7], where parts of the calculation are offloaded to the
accelerator, while the CPU handles other work. We wish to consider more general and flexible
task-parallelism, which could be mapped to a modular system.

We examine typical LQCD workflows for examples of elements that can be executed simulta-
neously or out of order. We assume a sufficiently fast network for this exercise, such that moving
data between nodes is cheaper than writing it to disk and re-reading it.

One example is to have dedicated I/O nodes in an HMC job. We assign a group of booster
nodes to evolve HMC trajectories. At appropriate check-pointing intervals they pass a copy of
the gauge field to a group of I/O nodes, which would make simple essential measurements (e.g.,
Wilson flow) before writing the configuration to disk. The HMC evolution continues uninterrupted.

A second example is to assign generating propagators and performing contractions to separate
hardware groups. Multi-nucleon correlators and correlators from stochastic sources require large
numbers of propagators and even more contractions. The contraction group does not need to retain
a copy of the gauge field in most cases. This example is depicted in Fig.4.

Separating tasks allows tailoring the size and characteristics of the hardware allocations to
tune the load balancing.

3. The QMOD Project

The QMOD project at JSC has the goal of developing versatile libraries to investigate different
concurrency models in the context of a modular supercomputing system. The software should allow
node groups to execute different task components of an LQCD code concurrently. It should provide
functionality to pass generic lattice data structures — gauge fields, propagators, eigenvectors —
between hardware groups.

The software should also allow testing of a variety of concurrency schemes on a range of
hardware architectures. It should interface with existing, well-developed open-source simulation
codes. To this end, the QMOD libraries are designed to work as an add-on to the widely-used
USQCD software stack [3].

The USQCD software stack is a hierarchy of layers containing software libraries which handle
general utility aspects of a lattice simulation in a common manner. At the top are simulation
applications, such as the MILC code [4] and Chroma[5] which can be linked to elements of the
stack. The QDP++ library parallelizes lattice field data structures across processes and nodes, while
QIO provides I/O functions for lattice field objects. QMP is a message-passing library providing

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

a common communications interface. The libraries can be compiled to target a wide range of
hardware architectures.

Of particular interest are the architecture-specific Dslash and inverter libraries QPHIX [6] and
QUDA. The former is optimized for Intel many-core processors, and the latter for Nvidia GPUs.
Since Intel and Nvidia hardware are each well-represented in the clusters at JSC, we have the
opportunity to test simulation schemes with components executing concurrently on Intel or GPU
hardware modules.

The QMOD project consists of two libraries interacting with different levels of the USQCD
software stack, QMPadd and QMOD. QMPadd establishes the communication link between parti-
tions and the QMOD library provides data transfer functionality.

3.1 The Intercommunicator

To avoid a massive re-design of existing libraries, code running on separate hardware groups
must behave as if they were independent, so that QDP++ can provide data-parallelism (e.g., lattice
layouts) on each, as normal. This means that the default QMP (or MPI) communicator must be local
to each group. QMPadd establishes an additional communication channel, an intercommunicator,
between groups for the transfer of lattice-wide data fields.

QMPadd is linked to the QMP library. When the simulation is initialized, all of the nodes
in all hardware groups belong to the same default QMP communicator, normally mapping to
MPI_COMM_WORLD. The QMP library provides a function, QMP_comm_split(), to split
a communicator. This function is most often used for farming multiple simulations, but is ex-
actly what we need here. QMPadd makes a copy of the default communicator as global_comm,
then calls QMP_comm_split() to split the default communicator according to a key provided
at run time. One might, for example, assign Haswell nodes to communicator 0 and KNL nodes to
communicator 1. The new communicators then become the default QMP communicators of their
respective groups.

The final step is to exchange the global node IDs of the local head nodes — the 0 nodes in
each of the new default communicators — so that messages can be addressed appropriately later.
Invoking the communicator split from the QDP++ after the initialization of QMP but before the
initialization of the layout produces independent layouts on the different hardware groups. This
requires the addition of a few lines in the appropriate qdp_XXXX_init.cc file.

3.2 Lattice field exchange

The QMOD library handles the exchange of lattice fields between hardware groups through
the inter-communicator. This operation bears many similarities to I/O of lattice fields. Saving a
lattice field to disk can be done in parallel, with every node writing its share of the layout, or one or
more I/O nodes writing all of the data. In the latter case, the I/O nodes must collect the data from
the other tasks, organize it and then write it to disk in a standard format.

So it is with sending a lattice field across the global intercommunicator. In the simplest “serial
send” case, a single node collects the data from the local hardware group and sends it across the
inter-communicator to the remote group. Alternately, the send could be handled in parallel by
multiple comm nodes.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

Likewise, reading a lattice field from disk is analogous to receiving of a lattice field through
the intercommunicator. The recipient could be a single comm node “serial receive” which then
distributes the data to the receiving group. Alternately the sending group could direct the data to
multiple comm nodes in the receiving group.

Due to these similarities, the collection and communication functions in QMOD are closely
modeled on corresponding functions in QDP++ and QIO. Currently, only the “serial comm” case
of the a single sending node and a single receiving node is implemented. Developing the full range
of functionality will allow optimization and tuning of the communication between hardware groups
of different sizes or different architecture configurations. However, it presents a large programming
task to consider all possible cases.

Inter-group communication differs from binary I/O in a significant manner. In a binary data
file, there is normally a file header and the reading node knows the position of the file pointer
within the full record. These provide context about the amount of data to digest and where the
current bytes should go in the global data structure. The writing node can also set the file pointer
to a known address beyond the start of the file.

In communication between hardware groups, the receiver expects to receive data in messages
of a standard, pre-determined size (the full data structure may be too large for a single message).
These messages may arrive out of order, so QMOD packages each with a header providing context.
Crucially, the header contains the site indices corresponding to the field data in the payload.

3.3 Receive-from-any functionality

In its distributed form, QMP allows receipt of data only from a known sender. However, in
the MPI standard, a message can be received from MPI_ANY_SOURCE. A single-line edit in the
QMP library unlocks this functionality.1

A case where this is useful is when we have multiple sending groups. Consider a job with
nodes divided into five groups. Four of the groups, perhaps on a partition of accelerator nodes,
perform inversions to produce propagators. As each group completes a solution, it sends the prop-
agator to group zero, which can receive from any group. Group zero continually takes propagators
as they are available to contract appropriately into correlators, reducing waiting time.

In the receive-from-any case the receiving group listens for a message from any remote group.
Upon receipt of the first packet it reads the header for the originating source, then locks the receive
operation to only receive data that corresponds to the same sender and same lattice field until
transfer is complete.

3.4 Chroma integration

New Chroma-style objects QMODSendNamedObject and QMODReceiveNamedObject,
analogous to QIOWriteNamedObject and QIOReadNamedObject, provide access to the
QMOD lattice field exchange functionality.

1In lib/QMP_mem.c, an existing assert insists that (sourceNode >= 0). By relaxing that condition to
(sourceNode ! = -1), we can allow -2, the normal value of MPI_ANY_SOURCE to be passed as the souce node.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

NETWORK

q prop

q
 p

ro
p

q
 p

ro
p

q
 p

ro
p

q prop

Figure 2: Booster nodes generating propagators
and sending them to “cluster” nodes to contract
into hadron correlators.

QMP

QDP++ (& QIO...)

QPHIX

CHROMA

QMOD

QMP−additions

*

*

Figure 3: The QMOD library in the USQCD
context with QPHIX. The ∗ indicates minor
changes to the USQCD existing library.

4. QMOD modular computing tests

The Jureca cluster at Jülich Supercomputing Centre (JSC) is a first-generation modular cluster,
with Intel Haswell and Knights Landing (KNL) nodes connected by a common network. It presents
a unique test-bed for examining different concurrency schemes for modular supercomputing. The
packjob feature of the Slurm scheduler allows support for multiple heterogeneous job components
which can run as part of a common MPI communicator.

For this environment, we must first build separate QMOD-enabled Chroma executables for
each architecture (i.e., Haswell and KNL). This means building the software stack for each with
the insertion of QMPadd and QMOD libraries at the correct levels, illustrated in Fig. 4.

To run a Chroma modular job of node groups on the KNL and Haswell modules, we submit a
packjob, a Slurm feature allowing heterogeneous job support. An excerpt from a sample QMOD
two-group Slurm packjob script is in Fig. 4. Slurm options for different components are sepa-
rated by “#SBATCH packjob” lines in the preamble (line 4). Partitions “batch” and “booster”
correspond to Haswell and KNL nodes, respectively. In the srun launcher command, the two
components of the job are separated by the “:” on line 11. At JSC the software environment is
controlled by loading software modules. This must be done individually for packjob components
on different architectures with the xenv command, as in lines 9 and 13. Note the Haswell and
KNL components have different executables as well as input and output files. The -modcolor
flags (lines 11 and 17) are read by the modified QMP_initialize(), and determine to which
default communicator the component belong after the split.

5. Status and plans

The QMOD project is at a beginning, stage with much work remaining. An improved commu-
nication standard will allow the passing of XML metadata with lattice objects. Parallel communi-
cation modes will be added. To date, the code has been tested by exchanging propagators between

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
0
5

QCD on the Modular Supercomputer Eric B. Gregory

1 ...

2 #SBATCH -N 2

3 #SBATCH -p batch

4 #SBATCH packjob

5 #SBATCH -N 2

6 #SBATCH -p booster

7 ...

8 srun -n 2 xenv -L Intel -L ParaStationMPI -L imkl -L libxml2 -L GMP \\

9 env OMP_NUM_THREADS=24 ${EXEC_DIR}/sendtest_hsw -i recv_test.xml \\

10 -o outhsw.xml -by 4 -bz 4 -c 24 -sy 1 -sz 1 -pxy 1 -pxyz 0 -minct 1 \\

11 -geom 1 1 1 2 -modcolor 0 : \\

12 -n 2 xenv -L Intel -L ParaStationMPI/5.2.2-1-mt -L imkl -L libxml2 -L GMP \\

13 env OMP_NUM_THREADS=68 ${EXEC_DIR}/sendtest_knl -i send_test.xml \\

14 -o outknl.xml \\

15 -by 4 -bz 4 -c 68 -sy 1 -sz 1 -pxy 1 -pxyz 0 -minct 1 \\

16 -geom 1 1 1 2 -modcolor 1

Figure 4: Slurm packjob batch script command for a modular QMOD test job.

groups using Chroma-style xml input file control. We will widen the tests to include the exchange
of other lattice objects, such as gauge fields or eigenvectors. Development of full measurement
routines will allow benchmarking and load balancing tests.

QMOD is tightly coupled to USQCD software and will be distributed open source. Interested
parties can gain access to the pre-release code and necessary caveats by correspondence with the
author. A more formal packaging and standardized build system is in the works.

6. Conclusion

We are entering an era of modular supercomputing, where a single parallel job may dynami-
cally access different, specialized architecture to suit the needs of program components. For lattice
simulations to reap the advantages, codes must accommodate task-parallelism. The goal of the
QMOD project is to make it simple to test modular computing strategies and take advantage of
upcoming modular supercomputers.

References

[1] https://www.deep-projects.eu/

[2] E. Suarez, N. Eicker, T. Lippert, John von Neumann Institute for Computing Series, 49, 1 (2018).

[3] https://www.usqcd.org/usqcd-software/

[4] http://www.physics.utah.edu/∼detar/milc/milc_qcd.html

[5] R. G. Edwards et al. [SciDAC and LHPC and UKQCD Collaborations], Nucl. Phys. Proc. Suppl. 140
, 832 (2005) doi:10.1016/j.nuclphysbps.2004.11.254 [hep-lat/0409003].

[6] https://github.com/JeffersonLab/qphix/

[7] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517
(2010) doi:10.1016/j.cpc.2010.05.002 [arXiv:0911.3191 [hep-lat]].

6


