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1. Introduction

Despite many attempts and partial successes to address the finite density sign problem in lattice
QCD, a solution applicable to the full parameter space (temperature 7', baryon chemical potential
Up, quark mass m, and lattice gauge coupling ) has not yet been established. Here we report
on the incremental progress to unravel the phase diagram in the strong coupling regime of lattice
QCD with staggered fermions, based on a leading order strong coupling expansion valid to ()
[1, 2, 3]. The recent progress to address higher order corrections [4] are not yet considered in full
Monte Carlo simulations.

The phase diagram of lattice QCD in the strong coupling limit has been investigated since
more than 30 years [5, 6, 7, 8] and is by now well known, with the Worm algorithm as a main
Monte Carlo tool to investigate its features [9, 10, 11]. Beyond the strong coupling limit, the
leading order gauge corrections have been included as well, but ambiguities on the phase boundary
arising when using different N; have not yet been addressed. These ambiguities have so far only
been successfully resolved in the strong coupling limit (both in the chiral limit [12] and at finite
quark mass [13]).

The long-term goal is to extend the validity of the strong coupling expansion to answer an
important question on the existence of the critical end point (CEP): At strong coupling, the CEP
has been located at (aug,aT“) = (1.56(3),0.80(2)) in the chiral limit (where the CEP turns into a
tri-critical point TCP), and its quark mass dependence has been investigated, with tri-critical scaling
o< mg/ > for small quark masses [14]. The dependence of the location of the CEP as a function of 3
has not yet been determined. Whether the CEP also exists in the continuum limit remains an open
question. First hints can be obtained by monitoring the 3-dependence of the CEP for small 3: if
it moves to smaller up (and if this behaviour is monotonous), it may exist; if it moves to larger
Ug, it may even vanish in the continuum limit and the chiral transition is for all values of g just a
CTOSSOVer.

The main difficulty when mapping out the phase diagram is that we need to introduce a bare
anisotropy 7 in the strong coupling regime in order to vary the temperature continuously at fixed
values of . The temperature and chemical potential are however determined by the physical
anisotropy & = Z—‘:, which depends non-perturbatively on v and the lattice gauge coupling . Here
we will report on how the B-dependence of & is determined, and present preliminary results when
applied to the phase diagram in the strong coupling regime.

2. Dual formulation of lattice QCD

The strong coupling regime of lattice QCD can be formulated in a dual representation and it
was generalized recently to include in principle any order in 3 [4]. In this proceedings however,
we only incorporate the leading order gauge correction &(f) as outlined in [2] and re-derived
in the appendix of [4]. It is based on a series expansion in terms of the (anti-) quark hopping
d_u (x) from the staggered Dirac operator, and plaquette occupation numbers 7,7, on plaquette
coordinates p = (x, i, v) from the Wilson gauge action. In contrast to previous formulations of the



Gauge Correctinos on Anisotropic Lattices Wolfgang Unger

dual partition sum, we now adopt the notation:

ky (x) = min {dy (x),du(x) }, fu(x) = du(x) —dy(x), (2.1)
where ky (x) € {0,...N.} is the dimer number and f;;(x) € {—N,...N.} is the net quark flux. The
ky (x) are always quark-antiquark combinations, and color singlets formed by a quark and gluon are
no longer regarded as dimers (in contrast to our previous formulation - the new convention is advan-
tageous when higher order corrections are considered). The dual degrees of freedom {k, f,m,7,n}
fulfill the gauge constraint at each link:

x)+ Y [Sn#,v(x) —Snyy(x— v)} -y [u o v] = Nequ(x), (2.2)

v>U v<p

where for the @'(3) partition function, g, (x) € {—1,0,1} and 8ny v (x) = 6np, =n,—ii, € {—1,0,1}.
The Grassmann constraint at each lattice site is:

me+ Y <ku(x)+‘f“2(x)’> =N, Y fulx)=0. (2.3)
+u +u

In terms of the above dual variables, and including a bare anisotropy 7, the partition function
can be rewritten as:

Brotip oMadu0fu (%) ,yéu.O(Lfﬂ () |2k (x)) (2ring )™
Z(B.vuging) =}, oOf] —— TI T(Cy)
C:{npvﬁpvkbf[vmx} p np'np' 5:()@#) k(‘(kf + |fé‘)‘ X mX!
2.4)
with B 2N , the quark chemical potential p, = ﬁ,ug. The three non-trivial vertex weights
N,! N,!
T\ = T, = (N.—1)!, T3 =— (2.5)

depend on the local degrees of freedom Cy = {m, ky (x), fu(x),nuv(x),Auy(x)} and are employed
whenever some nyy (x) > 0 (fiy(x) > 0) and some fy, (x) > 1. For N. = 3, the sign

C>=I;c(€1)1;o(€3>, o(l) = (—1) ¢ Hnu (2.6)

factorizes into single fermion (| f; (x)| = 1) and triple fermion loops (| f (x)| = 3). This factorization
no longer holds beyond &(f3), see [4]. The dual degrees of freedom are color singlets which are no
longer just baryons and mesons as in the strong coupling limit: the gauge corrections will resolve
the quark structure of the point-like baryons and mesons, making them effectively spread out over
one or more lattice spacings. The reason why the sign problem is mild in the strong coupling limit
is that baryons are heavy, where Ay ~ 107> This is still approximately true for < 1, where the
sign problem remains manageable. For details see [3].

In the following we will consider the chiral limit of the partition function Eq. (2.4), which
implies m, = 0 and which has the symmetry group :

Uy xU(1)ss : 2 (x) > ENOFIO 5 (1, g(x) = (—1)ntatut 2.7)

with U(1)y the baryon number conservation and U(1)ss the remnant chiral symmetry which is
broken spontaneously at low temperatures and densities. In Sec. 4 we will address the chiral critical
line that terminates in a tri-critical point before turning first order.
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3. Anisotropy Calibration at finite 3

It is crucial to understand the relationship between the bare anisotropy ¥ and the non-perturbative
anisotropy & = Z—‘; (with @ = a4 the spatial and a; the temporal lattice spacing) in order set the tem-
perature and chemical potential consistently for various N;. Anisotropic lattices are necessary in
the strong coupling regime since at fixed f this is the only way to vary the temperature continu-
ously [15, 16]. The precise correspondence between & and 7y has been established in the strong
coupling limit and in the chiral limit [12], resulting in

2
Y
K Kk =0.781(1 3.1
SN~ RV (1), 3.1
and at finite quark mass in [13], where it was shown that k(m,) = 5lim % has a simple mass
—>00

dependence in the strong coupling limit. The basic idea of the anisotropy calibration is to identify
a conserved current and scan in ¥ such that the lattice is physically isotropic for a fixed aspect ratio:

N.
No'acy ;Nﬂgaf = é - Nir. (3.2)
(e

The conserved current is related to the pion [17]

i) = (o) (ku () = 31101 63

with €(x) = +1 the parity of site x. Eq. (3.3) is the generalization of the strong coupling limit
(where f;;(x) € {—N,,0,N,} is the baryon flux through that link) to incorporate gauge corrections.
This allows us to extend the anisotropy calibration to finite  to obtain &(y,). Away from the
strong coupling limit it is in principle necessary to include a second bare anisotropy ¥ in the
gauge part

B-

Banrﬁp N nga +ips B:pf+ﬁma Y6 =1/ 58 (3.4)
Bo
and then scan in both the fermionic and gauge anisotropy to obtain &(¥,¥s,B). On finer lattices
this is indeed necessary [7], but in the strong coupling regime, where we cannot set a scale, it is an
unnecessary complication: as f3 is increased, the lattices needed to study the chiral phase transition
will eventually become isotropic, and beyond this point, the temperature is varied via a(f3). In this
proceedings, we will always set ¥ = 1 and leave the more general setup for the future.

In Fig. 1 (left) we show the anisotropy calibration for various fixed 8: On lattices N> x Ny
with aspect ratios & =2,3,4,5,6,8 we obtain the value of y(&) where the ratio of the temporal and
spatial fluctuations of the conserved charge Q,, Q, are equal. This is repeated for various . Since
the partition function Eq. (2.4) depends on y and N, the bare (mean field) temperature [aT |is =

N
needs to be corrected by the non-perturbative factor [& /2] g» shown in Fig. 1 (right), to yield the
correct temperature al = 15,—1/) Our result allows to define the Euclidean continuous time limit

ar — 0 unambiguously at fixed f3: the temperature and chemical potential are then defined as

aT = x(B)[aT |, app = K(B)[aup]ms with K(B) = 51520 E/7]p- (3.5)
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Figure 1: Left: Determination of y for various 3 by requiring the ratio of charge fluctuations to be equal,
shown for & = 2. Right: Extrapolation of the correction factor & /y> towards continuous time to yield k().

4. Gauge Corrections to the Phase Diagram and Density of States

We will now focus on a particularly important application of the previous result: the modifi-
cation of the chiral transition within the grand-canonical phase diagram, when taking into account
the non-perturbative definition of temperature and chemical potential Eq. (3.5). In Fig. 2 we show
the effect of applying the B-dependent correction factor [&/}?] p to the phase boundary, for the
various f3 in a regime where the sign problem is manageable. All data have been measured via
the Worm algorithm in combination with plaquette updates, on lattices N> x 4 We observe that
the back-bending at lower temperatures vanishes. This behaviour meets our expectations, but we
require larger lattices and should check that we have the same finding also on lattices with N; > 4.

We also investigate the density of states on anisotropic lattices, which can be measured via
the Wang-Landau method. Since the quark fluxes f; (x) form world lines, and the total number of
quark fluxes wrapping around in temporal direction is a multiple of N, due to the gauge constraint
Eq. (2.2), it is possible to define baryon number sectors Nz € {—Ns>,...,N5>} and allow updates
that modify the baryon number by one unit. We will explain the details of the canonical simulations
and the resulting canonical phase diagram is in the np — T plane in a forthcoming publication. The
analysis of the density of states in Np as shown in Fig. 3 can yield additional insights concerning
the first order phase boundary below the TCP: the density of states is weighted with 45/ for
various f3 to the critical chemical potential ,ull;l, where the peak heights are equal. We observe that
the first order transition weakens with 3, and that the the critical chemical potential uém increases
only slightly with . This is in agreement with the findings of the 3-dependence of the nuclear
transition at low temperatures on isotropic lattices [3].
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Figure 2: Comparison of the phase boundary with the mean field definition of the temperature (left) and

its non-perturbative counterpart (right), resulting in a collapse of the first order line for all values of
considered.
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Figure 3: The density of states weighted to the critical chemical potential uy, showing a double peak
structure for aT’ < aTrcp. The value of [,Lll;l only very mildly grows with 3.

5. Conclusions

We determined the non-perturbative relation between the bare anisotropy Y and the lattice
anisotropy & = a% at finite f in the range of validity B < 1, based on the leading order partition
function. The results have been used to define the temperature and baryon chemical potential
unambiguously. The extrapolation a; — 0 is under control. This may even allow to extend the
existing Monte Carlo simulations in Euclidean continuous time to finite 3 in the future.

The main (still preliminary) finding on the phase boundary of lattice QCD in in the chiral limit
is that the first order line is not -dependent after the non-perturbative correction of the temperature
and chemical potential. This is consistent with mean-field theory [18] and results on isotropic
lattices. Whether the first order line is B-dependent for f > 1 and whether the tri-critical point
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moves to larger or smaller chemical potential when f is increased requires further investigation.
Most likely higher order corrections need to be included, as outlined in [4].

We have also presented first results on the B-dependence of the density of states in the baryon
number, from which the canonical phase diagram can be determined. Even though this dependence
is very weak, this method has the potential to discriminate between the chiral and nuclear transition
and address the question whether they split, as is expected: in the continuum, chiral symmetry
should still be broken in the nuclear phase, resulting in two separate first order transitions at low
temperatures.
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