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1. Introduction

This review will only cover the matrix elements of local, parity conserving, dimension-
3, quark bilinears operators in the ground state of neutrons and protons in the isospin
symmetric (mu = md) limit. In particular, I will not discuss products or commutators of
currents [1, 2, 3], contribution to the electric dipole moments from the QCD Θ-term [4],
PDFs and their moments [5, 6], matrix elements within other baryon states [7], or decays [8],
which are discussed by other speakers in these proceedings.

The calculational methodology of isovector matrix elements of nucleons is mature,
however, control over all the systematics and assigning a reliable estimate of uncertainty
to each needs to be reviewed. As discussed below, the errors in the scalar matrix elements
are still large. There are new publications showing excited states with small mass gap
contribute to isoscalar matrix elements at small nonzero momentum, i.e., in the form
factors, consequently the systematic error due to the excited state contamination may
be underestimated. There has been no significant development in the methodology for
reducing the systematics due to the renormalization factor, finite volume, discretization
errors and scale-setting, and the chiral extrapolation to the light quark mass. Overall,
the first part of my talk on nucleon charges has significant overlap with the recent FLAG
2019 report [9] that provides a status report up to the beginning of 2019, and the reader
is referred to it.

2. Isovector gA
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co
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gu−d
A

PNDME 18a 2+1+1 A F‡ F F F F 1.218(25)(30)
CalLat 18 2+1+1 A ◦ F F F F 1.271(10)(7)
CalLat 17 2+1+1 P ◦ F F F F 1.278(21)(26)
PNDME 16a 2+1+1 A ◦‡ F F F F 1.195(33)(20)
Mainz 18 2+1 C F ◦ F F F 1.251(24)
PACS 18 2+1 A � � F F � 1.163(75)(14)
χQCD 18 2+1 A ◦ F F F F 1.254(16)(30)$

JLQCD 18 2+1 A � ◦ ◦ F F 1.123(28)(29)(90)
LHPC 12Ab 2+1 A � ‡ F F F F 0.97(8)
LHPC 10 2+1 A � ◦ � F � 1.21(17)
RBC/UKQCD 09B 2+1 A � � ◦ F � 1.19(6)(4)
RBC/UKQCD 08B 2+1 A � � ◦ F � 1.20(6)(4)
LHPC 05 2+1 A � � F F � 1.226(84)
Mainz 17 2 A F F F F ◦ 1.278(68)(+0

−0.087)
ETM 17B 2 A � ◦ ◦ F F 1.212(33)(22)
ETM 15D 2 A � ◦ ◦ F F 1.242(57)
RQCD 14 2 A ◦ F F F � 1.280(44)(46)
QCDSF 13 2 A ◦ F � F � 1.29(5)(3)
Mainz 12 2 A F ◦ ◦ F ◦ 1.233(63)(+0.035

−0.060)
RBC 08 2 A � � � F � 1.23(12)
QCDSF 06 2 A ◦ � � F � 1.31(9)(7)
aTree-level tadpole-improved. bTree-level improved. ‡Not fully
O(a) improved. $Also has partially quenched analysis.
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Figure 1: Compilation of the world data on isovector gA presented in the FLAG [9] Review.

Fig. 1 from FLAG 2019 [9] gives the status of gu−dA and summarizes that calculations
have obtained control at about the 3% level. Recent results from LHPC [10] using 2+1-
flavor Clover fermions, RBC-UKQCD [11] using Domain Wall fermions at a lattice spacing
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of 1.73 GeV, and by PNDME collaboration using Clover-on-Clover formulation with six
2+1 flavor clover fermions are consistent with this picture. In contrast, as shown in Fig. 2,
the CalLat collaboration is claiming sub-percent accuracy [12]. The open question here is
whether all the systematic effects, in particular excited states, are accounted for in their
error estimate. The reservation is illustrated in Fig. 3. CalLat fit for gA on the a≈ 0.09 fm,
Mπ ≈ 220 MeV starts at t∼ 3a and is dominated by the range t/a= 3–8, however, the two
point function (M eff) shows clear indication of excited states even up to t ∼ 10a. In this
regard, it is interesting to note the observation of the Mainz group [13] (See Fig. 4) that one
needs to go out to about 1/2Mπ before the lowest excited state mass expected from Chiral
Perturbation theory [14] is manifest. If such low-mass states contribute to gA, would it
change the CalLat analysis based on small values of t, in particular the error estimate, i.e.,
has the statistical precision been traded for unaccounted-for systematics? Is the CalLat
analysis sensitive to possible low-lying excitations whose contribution is only expected to
manifest at large time separations? Is the transition matrix element small? More work is
needed to resolve these issues.

The ETMC collaboration [15] has compared various strategies for estimating the
excited state contamination: the plateau method at large separations, the summation
method, and using two-state fits. They find the statistical errors to be smallest when using
the two-state fits. Their results at the physical quark mass, but at a single value of a≈ 0.08
are consistent with the CalLat determination, but with about 1.5% errors. The ETMC
result does not, however, include the a→ 0 extrapolation systematics. Lastly, the PACS
collaboration has tested the efficacy of a Coulomb-gauge exponential source versus the
usual Gaussian-smeared sources in removing excited state contamination [16]. While the
differences do not seem to be major, their latest statement is that the Gaussian-smeared
sources are better.

3. Isovector gS and gT

According to FLAG 2019 [9], the isovector gS = 1.022(80)(60) is currently known to
about 10% and gT = 0.989(32)(10) to about 4%, see Figs. 5 and 6. New calculations
presented in this conference from the LHPC [10], PACS [16], Mainz [13] and PNDME [17]
collaborations agree with this consensus within one standard deviation. The ETMC collab-
oration [15] again finds that the two-state fits to remove excited state contributions resulted
in the smallest statistical errors. Their results at a single lattice spacing of a ≈ 0.08 fm
differ from the world averages of the a→ 0 extrapolated values by about two standard
deviations. Note, however, the systematic due to a→ 0 extrapolation in their estimate
from one ensemble is an unknown.

4. Flavor Diagonal Charges

Estimates for the flavor-diagonal charges have larger statistical and systematic uncer-
tainty than the isovector case. Also, the connected and disconnected contributions are fit
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The a12m130 (483 x 64 x 20) with 3 sources cost as much as all other ensembles combined
2.5 weekends on Sierra → 16 srcs
Now, 32 srcs (un-constrained, 3-state fit)

We generated a new a15m135XL (483 x 64) ensemble (old a15m130 is 323 x 48)
M𝜋L = 4.93  (old M𝜋L = 3.2)
L5 = 24, Nsrc = 16

We are running gA(Q2) on Summit this year (DOE INCITE)
We anticipate improving gA to ~0.5%

PRELIMINARY
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Nature 558 (2018) no. 7708, 91-94 
Chang et al. [arXiv:1805.12130] Sierra Early Science

1 year on Titan (ORNL) + 2 years 
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gA = 1.2711(125) → 1.2641(93)  [0.74%]
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Figure 2: A slide from the CalLat [12] presentation explaining the improvements and expected
reach of their calculations.
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Figure 3: Effective mass plots for the extraction of the ground-state mass (left) and axial charge
gA (right) by the CalLat collaboration [12]. The extraction of the charge is dominated by the low
error points at t/a≈ 3, the validity of which depends on reliable subtraction of excited states that
clearly visible till t/a≈ 10.

separately (implying a partially quenched analysis) to remove the excited-state contam-
ination [18]. The associated, presumably small, systematic is not estimated. As shown
in Fig. 7, the u and d quark contributions, guA and gdA are determined at the 5 and 8%
accuracy. The difference is due to the fact that the magnitude of the d quark contribution
is smaller but has a similar error. The much smaller strange quark contribution is known
at 15% level. So far, very few collaborations have attempted to control all the systematics
in the calculation of flavor diagonal charges, and a dependence on the sea charm quark
cannot yet be ruled out. New results from the Mainz [13] and PNDME [17] collaboration
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Figure 4: Calculation of the axial charge gA by the Mainz collaboration [13]. The left panel shows
an example of the determination of excited-state mass gap and the right panel shows the chiral
extrapolation of their data. Chiral perturbation theory predicts the smallest mass gaps to be given
by the horizontal lines, but the fitted mass gap is consistent with this only when they start at
distances Mπt0 ≈ 0.4.
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PNDME 18 2+1+1 A F‡ F F F F 1.022(80)(60)
PNDME 16 2+1+1 A ◦‡ F F F F 0.97(12)(6)
PNDME 13 2+1+1 A � ‡ � F F F 0.72(32)
Mainz 18 2+1 C F ◦ F F F 1.22(11)
JLQCD 18 2+1 A � ◦ ◦ F F 0.88(8)(3)(7)
LHPC 12 2+1 A � ‡ F F F F 1.08(28)(16)
ETM 17 2 A � ◦ ◦ F F 0.930(252)(48)(204)
RQCD 14 2 A ◦ F F F � 1.02(18)(30)
‡Not fully O(a) improved.
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Figure 5: Compilation of the world data on isovector gS presented in the FLAG [9] Review.
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T

PNDME 18 2̧+1+1 A F‡ F F F F 0.989(32)(10)
PNDME 16 2̧+1+1 A ◦‡ F F F F 0.987(51)(20)
PNDME 15 2̧+1+1 A ◦‡ F F F F 1.020(76)
PNDME 13 2̧+1+1 A � ‡ � F F F 1.047(61)
Mainz 18 2̧+1 C F ◦ F F F 0.979(60)
JLQCD 18 2̧+1 A � ◦ ◦ F F 1.08(3)(3)(9)
LHPC 12 2̧+1 A � ‡ F F F F 1.038(11)(12)
RBC/UKQCD 10D 2̧+1 A � � ◦ F � 0.9(2)
ETM 17 2̧ A � ◦ ◦ F F 1.004(21)(2)(19)
ETM 15D 2̧ A � ◦ ◦ F F 1.027(62)
RQCD 14 2̧ A ◦ F F F � 1.005(17)(29)
RBC 08 2̧ A � � � F � 0.93(6)
‡Not fully O(a) improved.
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Figure 6: Compilation of the world data on isovector gT presented in the FLAG [9] Review.
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agree with the previous 2+1 and 2+1+1 results (FLAG averages), respectively.
The situation of the flavor-diagonal tensor charges is similar. As per the FLAG averages

(Fig. 8), the u and d quark contributions are known at 4 and 7% accuracy, whereas the s
quark contribution differs from zero only by 1.7σ. New calculations from the Mainz [19]
and PNDME [17] collaborations give consistent values for the u and d quark contributions.
PNDME have reduced the uncertainty on the s quark matrix element, gsT , and it is now
negative with > 2σ confidence.
Collaboration Nf pu

b.

co
nt
.

ch
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vo
l.
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n.

st
at
es

∆u ∆d

PNDME 18A 2+1+1 A F‡ F F F F 0.777(25)(30)# −0.438(18)(30)#

χQCD 18 2+1 A ◦ F F F F 0.847(18)(32)$ −0.407(16)(18)$

ETM 17C 2 A � ◦ ◦ F F 0.830(26)(4) −0.386(16)(6)

∆s

PNDME 18A 2+1+1 A F‡ F F F F −0.053(8)#

χQCD 18 2+1 A ◦ F F F F −0.035(6)(7)$

JLQCD 18 2+1 A � ◦ ◦ F F −0.046(26)(9)#

χQCD 15 2+1 A � ◦ � F F −0.0403(44)(78)#

Engelhardt 12 2+1 A � ◦ � F F −0.031(17)#

ETM 17C 2 A � ◦ ◦ F F −0.042(10)(2)

#Zn.s.A = ZsA assumed. $Also partially quenched analysis. ‡Not fully O(a) improved.
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Figure 7: Compilation of the world data on flavor-diagonal gA presented in the FLAG [9] Review.

The situation of the scalar charges that give the πN -σ term continues to be unresolved.
As shown in Fig. 9, the σπN results vary between a cluster around 40, and another around
60, with most controlled lattice calculations favoring the former. The 2+1+1 flavor av-
erage is the higher value, 65(13), coming from a single-ensemble calculation by the ETM
collaboration [15] that includes the charm quark. The corresponding strange sigma term
is known with about 20% accuracy, again preferring the smaller value of around 40 MeV.
PNDME [17] has presented their first results favoring the smaller value of 34(6). They also
report an additional systematic—a dependence on the renormalization scheme used. The
RI-MOM scheme gives the smaller value, 23(7) compared to the RI-SMOM. This scheme
dependence needs further attention.

The BMW collaboration [20] presented preliminary results for the nucleon sigma terms
for the u, d, s and c quarks using a stout staggered action. The values for σqN are consistent
with their earlier results.

5. Vector Form Factor

The quantity of highest phenomenological interest for the vector and axial form factors
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guT gdT

PNDME 18B 2+1+1 P F‡ F F F F 0.784(28)(10)# −0.204(11)(10)#

PNDME 16 2+1+1 A ◦‡ F F F F 0.792(42)#& −0.194(14)#&

PNDME 15 2+1+1 A ◦‡ F F F F 0.774(66)# −0.233(28)#

JLQCD 18 2+1 A � ◦ ◦ F F 0.85(3)(2)(7) −0.24(2)(0)(2)
ETM 17 2 A � ◦ ◦ F F 0.782(16)(2)(13) −0.219(10)(2)(13)

gsT

PNDME 18B 2+1+1 P F‡ F F F F −0.0027(16)#

PNDME 15 2+1+1 A ◦‡ F F F F 0.008(9)#

JLQCD 18 2+1 A � ◦ ◦ F F −0.012(16)(8)
ETM 17 2 A � ◦ ◦ F F −0.00319(69)(2)(22)
#Zn.s.T = ZsT assumed. &Only ‘connected’. ‡Not fully O(a) improved.
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Figure 8: Compilation of the world data on flavor-diagonal gT presented in the FLAG [9] Review.

is their momentum dependence over a range of Q2 values. The matrix elements of the
vector current are, in general, parameterized in terms of four form-factors, F1,2,A,3(Q2).
Of these, FA and F3 are zero when parity is a good symmetry, and the F1 and F2 are
usually combined into the electric and magnetic form-factors GE and GM that have a clear
interpretation in the Breit frame:

〈N |Vµ|N〉 ≡ ū
[
F1γµ+F2σµν

qν
2M +FA

2iMqµ−q2γµ
m2
N

γ5− iF3σµν
qν

2M γ5

]
u

GE = F1− Q2

4M2F2 GM = F1 +F2 .

The experimental values of these form-factors are very well parameterized by the Kelly
curve, so it was disconcerting that the lattice data for GE (from simulations with Mπ <

150 MeV) lie systematically above the curve at Q2 > 0.1 GeV2, as shown in the upper panels
in Fig. 10 taken from Ref. [21]. The GM data, on the other hand, tend to fall below the
curve for Q2 < 0.1 GeV2. The large-volume data from the PACS collaboration [22], is an
exception, and tends to lie closer to the phenomenological results, but are based on very low
statistics. As shown in Tab. 1, the isovector magnetic moment µ=GM (0)/GE(0)≡µp−µn,
and the electromagnetic radii, 〈r2

E,M ≡−6 d
dQ2

(
GE,M (Q2)
GE,M (0)

)∣∣∣
Q2=0

determined on the lattice
also deviate from their phenomenological estimates.

The analysis by the PNDME [21] also shows that the lattice results are much closer
to the Kelly determination if the scale is set from the nucleon mass as shown in the lower
two panels in Fig. 10. The magnitude of the remaining disagreement is comparable to the
scale-setting uncertainty, and points to an underestimate of the extrapolation systematics
as a likely cause.

The new results presented by the PNDME collaboration [17] using the Clover-on-Clover
data (See Fig. 11) show much better agreement with the Kelly curve than the Clover-on-
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σπN [MeV] σs [MeV]

MILC 12C 2+1+1 A F F F F − 0.44(8)(5)×ms¶§

JLQCD 18 2+1 A � ◦ ◦ F 26(3)(5)(2) 17(18)(9)
χQCD 15A 2+1 A ◦ F F F 45.9(7.4)(2.8)$ 40.2(11.7)(3.5)$

χQCD 13A 2+1 A � � ◦ F − 33.3(6.2)$

JLQCD 12A 2+1 A � ◦ ◦ F − 0.009(15)(16)×mN †

Engelhardt 12 2+1 A � ◦ � F − 0.046(11)×mN †

MILC 12C 2+1 A F ◦ F F − 0.637(55)(74)×ms¶§

MILC 09D 2+1 A F ◦ F F − 59(6)(8)§

ETM 16A 2 A � ◦ ◦ F 37.2(2.6)(4.7
2.9) 41.1(8.2)(7.8

5.8)
RQCD 16 2 A ◦ F F � 35(6) 35(12)

ETM 14A 2+1+1 A F ◦ ◦ 64.9(1.5)(13.2)4 −
BMW 15 2+1 A F‡ F F 38(3)(3) 105(41)(37)
Junnarkar 13 2+1 A ◦ ◦ ◦ − 48(10)(15)
Shanahan 12 2+1 A � ◦ ◦ 45(6)/51(7)? 21(6)/59(6)?

JLQCD 12A 2+1 A � ◦ ◦ − 0.023(29)(28)×mN †
QCDSF 11 2+1 A � � ◦ 31(3)(4) 71(34)(59)
BMW 11A 2+1 A ◦‡ F ◦ 39(4)(18

7 ) 67(27)(55
47)

Martin Camalich 10 2+1 A � F � 59(2)(17) −4(23)(25)
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JLQCD 08B 2 A � ◦ � 53(2)(+21

−7 ) −

4Multiple results. ‡Not fully O(a) improved. ?Two results are quoted. †From fTs = σs/mN
$Also partially quenched §Uses a hybrid

method ¶At µ = 2 GeV in MS scheme.
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Figure 9: Compilation of the world data on isosinglet gS presented in the FLAG [9] Review.

HISQ data for both GE and GM . The reason for the improvement with respect to previous
results has not been identified, so further assessment of the systematics needs to be carried
out.

New results for the disconnected contributions to the form-factors are available from
the ETMC [23] and Mainz [19] collaborations (See Figs. 13 and 12). The strange elec-
tromagnetic radii and magnetic moment are still determined poorly: they are within 2
standard errors of zero if statistical and systematic errors are added in quadrature. More
importantly for this discussion, inclusion of these do not resolve the disagreement with the
experimental results. Furthermore, the lattice data do not show the enhancement of the
electric form-factor around 0.2 GeV2 as seen in some experimental data.

6. Axial Form Factor

The situation for the axial form factors has been much more questionable as previous
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MN MeV a from Q2 Fit rE (fm) rM (fm) µ

PNDME 953(4) r1 z4 0.769(40) 0.671(90) 3.94(17)
PNDME a06 951(10) r1 z4 0.765(14) 0.704(36) 3.98(15)
LHPC’17 912(8) MΩ z5 0.887(49) 4.75(15)
ETMC’18 929(6) r0 dipole 0.802(22) 0.714(93) 3.96(16)
ETMC’17 941(2) r0 dipole 0.808(36) 0.732(58) 4.02(35)
PACS’18 958(10) MΩ z8|z7 0.915(99) 1.437(409) 4.81(79)
PACS’18A 942(11) MΩ dipole 0.875(32) 0.805(276) 4.42(35)

Table 1: The values of the neutron magnetic moment, and the electromagnetic charge radii from
the various collaborations. Various quoted errors have been added in quadrature. Experimentally,
µp = 1.79, µn =−1.91, rE = 0.875(6) from electrons and 0.8409(4) from muons.
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Figure 10: World data for the electric and magnetic form factors GE and GM from simulations
with Mπ < 150 MeV compiled in Ref. [21]. The upper two panels show the data plotted versus
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N . The difference is due to what quantity is used to set the
lattice scale, and is indicative of discretization errors.
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Figure 11: New results on the electromagnetic form factors from the PNDME collaboration [17].

Proton and neutron electric and magnetic form factors
Extended Twisted Mass collaboration using Nf = 2 + 1 + 1 simulations at the physical point, with a = 0.08 fm
and 643 × 128 lattice
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Nucleon structure 3 / 3

Figure 12: Slide from the ETM collaboration showing the results [23] for the electric and magnetic
form-factors of the proton including disconnected contributions.

results violated the PCAC relation. The axial form factors are defined by

〈N |Aµ|N〉 ≡ ū

[
GAγµ+ G̃P

qµ
2M

]
γ5u (6.1)

〈N |P |N〉 ≡ ūGPγ5u (6.2)
(6.3)
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comparison
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Figure 13: Slide from the Mainz collaboration [19] displaying the comparison of their results for
the strange contribution to the nucleon with previous results.

From these, the axial radius is extracted using

〈r2
A〉 ≡ −6 d

dQ2

(
GA(Q2)
GA(0)

)∣∣∣∣∣
Q2=0

(6.4)

Neutrino scattering data pre-2000 were fit to a dipole form to obtain rA = 0.666(17) fm
and a dipole mass of MA = 1.026(21) GeV [24], which agrees with those obtained from
the recent analysis of the deuterium system using the z-expansion: rA = 0.68(16) fm and
MA = 1.00(24) GeV [25]. The latter, however, has much larger uncertainty. On the other
hand, the MiniBooNE Collaboration, using the dipole ansatz and a relativistic Fermi gas
model [26, 27], find that MA = 1.35(17) GeV reproduces their double differential cross sec-
tion for charged current quasi-elastic neutrino and antineutrino scattering off carbon [28].
Thus, one needs to resolve three questions: (i) Is the dipole ansatz a good approximation to
the Q2 behavior? (ii) If it is, what is the value of MA? And, (iii) the cause and resolution
of the observation violation of PCAC in the lattice data discussed below.

The 2017 PNDME lattice results [29], shown in Figure 14, lie closer to the data from the
MiniBooNE experiment. In fact a dipole fit gives rA = 0.505(13)(6) fm andMA = 1.35(3)(2)
GeV. A z-expansion fit gives an even smaller slope at the origin: rA = 0.481(58)(62) fm
and MA = 1.42(17)(18) GeV. Their main conclusion was that the data show little variation
versus the lattice spacing a and the pion mass Mπ, however, to extract rA, more data
near Q2 = 0 are needed. Results from the ETMC collaboration were similar and gave
MA = 1.322(42)(17) GeV [30].

New results on the disconnected contribution, in particular the strange contribution,
were also presented this year by the Mainz collaboration [19].
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Axial Form Factor GA(Q

2) and Charge Radius 〈r2
A〉
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systematic error: difference of 〈r2
A〉 from two physical ensembles

rA = 0.48(4)fm (PNDME2017) [R. Gupta, et. al. Phys. Rev. D96 no.11, 114503 (2017)]

rA = 0.666(17)fm, MA = 1.026(21)GeV (neutrino scattering)

rA = 0.68(16)fm, MA = 1.00(24) (Deuterium) [Phys. Rev. D93 ,113015 (2016)]
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Figure 14: Results from the PNDME collaboration on the axial form factors.

7. PCAC Relation

A major advance this year was a credible resolution to the violation of the PCAC
relation on the lattice [31]. The situation previously could be summarized as: even though
the Axial Ward Identity: ∂µAµ = 2m̂P was indeed satisfied by the correlation functions
on the lattice, the corresponding relation between the extracted form-factor written as(
R1 ≡ 2m̂GP

2MGA
2MGA

)
+
(
R2 ≡ Q2G̃P

4M2GA

)
= 1 was strongly violated. These violations grew as

Mπ → 0 and Q2 → 0. In addition, the related hypothesis of pion-pole dominance, R4 ≡
4m̂MNGP
M2
πG̃P

= 1 was equally badly violated [29]. This is illustrated in Fig. 15, where we also

plot the combination R3 ≡ (Q2+M2
π)G̃P

4M2
NGA

= 1, and R5, the expected O(a) correction to R1

calculated with the the unimproved axial current.
Bali et al. [32] proposed a fix for this using projected currents A⊥µ = (gµν− p̄µp̄ν/p̄2)Aν ,

with 4-momentum p̄ the reflection of p about the light cone. The diagonal matrix element
of the added term should be zero in any spin-half state, so this current should provide an
equally good determination of the axial form-factors of the neutron, but possibly remov-
ing excited state effect due to transition matrix elements. They then suggested shifting
the pseudoscalar operator by a similar term, P⊥ = P − ( 1

2imq p̄µp̄ν/p̄
2)∂µAν but enforcing

pµA⊥µ = 2m̂P⊥. The matrix element of P⊥ was much larger and helped satisfy PCAC.
Since the quark masses mq are small numbers, it was a priori unclear whether the large
shift could be caused merely by O(a2) effects being amplified by the smallness of the quark
mass. Also, it was not clear why this projection was needed in the first place. Lastly, this
construct did not fix the small value of g∗P . An interesting feature of this proposed solution
is that the projection almost completely eliminates contributions from the A4, and its large
excited state effect, instead A⊥4 is dominated by contributions from Ai.

The PNDME collaboration, on the other hand showed [33] that the problem is resolved
by including low-mass excited states when removing the excited state contamination, and
the matrix element of the A4 current is key to their solution. In particular, when the
mass-gap between the first-excited and the ground-state is extracted from the two-point
function, the matrix elements of the spatial components Ai are well-fit, but the matrix
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elements of A4 has very large χ2. These latter matrix elements can, however, be fit if the
mass-gap is left free (see Fig. 16). The fit value of the mass-gap is close to a non-interacting
intermediate Nπ state. It is much smaller but cannot be ruled out by fits to the two-point
fit on the basis of χ2. The Ai correlators, on the other hand, fit equally well with any
of these mass-gaps, but the extrapolated results turn out to be different. What PNDME
finds (see Fig. 17) is that using the much smaller mass-gap, the PCAC relation, as well
as the pion pole-dominance (g∗P ), are satisfied up to small corrections that are of size that
can plausibly be attributed to O(a) effects.

The net outcome is a new determination of the form factors GA, GP and G̃P . They
present results for both the Clover-on-HISQ [33] and Clover-on-Clover [17] analysis. The
results of the two analysis are similar: the latter results are reproduced here in Fig. 18.PCAC and Pion-pole Dominance
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Figure 15: Various ratios of extracted form factors describing the violation of PCAC.

8. Other matrix elements

In this section, we briefly comment on the recent advances in calculating the nucleon
matrix elements of a few other operators. These calculations are all preliminary—often the
first calculations of their nature on the lattice—and the systematics are yet to be controlled.

8.1 CP violation from BSM

The calculation of nEDM due to the Θ-term is discussed in the plenary lecture by
H. Ohki [4]. Last year also saw a lot of activity in the calculation of the neutron EDM
arising from the operators beyond the standard model, especially those due to the quark
chromo-EDM and the Weinberg operator. In a parallel talk, Boram Yoon [34], summarized
the unrenormalized results for the F3 form factors, which are reproduced in Fig. 19. As

12



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
4
7

Nucleon Structure and Matrix Elements Tanmoy Bhattacharya

Axial Current A4 3-pt Correlator
[arXiv:1905.06470]
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3∗-state relaxed 2-state
n2 χ2/d.o.f p-value χ2/d.o.f p-value
1 21.78 < 5× 10−5 0.698 0.76
2 19.36 < 5× 10−5 1.654 0.06
3 11.79 < 5× 10−5 2.018 0.02
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Figure 16: Slide from PNDME [33] showing fits to the A4 correlation function showing that the
mass-gap determined from the two-point function does not fit the A4 correlator (top left), but
leaving it free gives a good fit (top right). The bottom table provides the χ2 values for the different
fits.
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Figure 17: Slide from PNDME [33] claiming solution to the PCAC puzzle in terms of a low-lying
excited state that had been missed. Both the ratios measuring violation of pion-pole dominance
(left) and of PCAC relation between form factors (right) are unity if the low-lying excited state is
accounted for.
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Figure 18: Isovector form-factors GA, G̃P and GP obtained by the PNDME collaboration [17]
taking into account the low-lying Nπ excited state contamination.

can be seen, the statistical errors in the case of the Weinberg operator are not yet under
control. For the quark chromo-EDM, the data from different groups using different actions,
naively show a very large quark-mass dependence. Further analysis is needed to understand
whether the renormalization and operator mixing effects can explain this.
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Figure 19: Comparison of the extraction of the electric dipole moment of the nucleon from the
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Figure 20: The gravitational moments of the nucleon by Shanahan and Detmold [35].

8.2 Gravitational Moments

In the last year, Shanahan and Detmold have provided the first calculations [35, 36] of
the gravitational moment of the nucleon (Fig. 20) and the pressure and shear distribution
within the nucleon (Fig. 21). These calculations have been done with a large pion mass
ensemble, but provide the first estimate of the mechanical radius of the proton as 0.71(1) fm.
Their data for the pressure and shear distributions, when fit using model-independent z-fits,
have large errors, and the systematics need further study.

8.3 Magnetic Polarizability

First results on calculating the polarizability of the nucleon were presented by the
Adelaide collaboration [37], and are reproduced here as Fig. 22. These first calculations
need further study before the systematics, especially the chiral extrapolation, is understood.

9. Future

The lessons from these calculations is that though lattice calculations have matured,
we still need to improve our approach to understanding systematic errors. In particular,
it is easy to inadvertently increase the systematic errors in our quest to reduce systematic
errors. In particular, the question that we need to ask is not whether any systematic is
visible in a given data set, but, rather, how large a systematic could be masked in it. The
approach advocated by a number of groups that use model averaging is a step in the right
direction, but does not solve the problem since the space of models averaged may not be
large enough, and the weights assigned to the conservative models may be too low. Partial
solution would be to move over to properly chosen blind analysis techniques, since, at least,
unconscious bias gets minimized in such approaches.
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Figure 21: Pressure and shear distribution inside the nucleon by Shanahan and Detmold [36].
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Figure 22: Magnetic polarizability of the nucleon [37].
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There are still many operators, calculating whose matrix elements needs more work.
We need a better control (statistical and systematic) of disconnected diagrams, of scalar
matrix elements, as well as matrix elements of higher dimensional (BSM) operators.
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