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What is the Higgs phase of a gauge Higgs theory?
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We argue that there is an essential and gauge invariant distinction between the Higgs and confine-
ment phases of a gauge Higgs theory, in terms of both symmetry and type of confinement, when
the scalar field is in the fundamental representation of the gauge group. The Higgs phase is the
spin glass phase of a gauge Higgs theory, in which custodial symmetry and a global center sub-
group of the gauge symmetry are spontaneously broken. Although the asymptotic spectrum con-
sists of color singlets in both the confinement and Higgs phases, the confinement phase satisfies a
generalization of the Wilson area law criterion which we call “separation of charge” confinement,
while the Higgs (spin glass) phase does not.
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Higgs phase Jeff Greensite

There is no thermodynamic phase transition which entirely separates the Higgs and confine-
ment phases of an SU(2) gauge Higgs theory in 3+1 dimensions [1, 2], and the particles in the
asymptotic spectrum are color singlets throughout the phase diagram, created by gauge invariant
local composite operators [3, 4]. In addition, the existence of a non-vanishing Higgs expectation
value is gauge dependent [5]. These facts, combined with the Elitzur theorem, tend to discourage
any attempt to distinguish between the Higgs and confinement-like regions of a gauge Higgs the-
ory; these regions are generally viewed as part of the same phase. In these proceedings we will
contest that view. We will argue that the transition between the confinement and Higgs phases in
a gauge Higgs system is as meaningful as the spin glass transition in a spin system, in fact it is a
type of spin glass transition, and as such it is characterized by the breaking of a global symmetry
detected by a gauge invariant order parameter. While the spectrum in both the confinement and
Higgs phases consists of particles created by local gauge invariant operators, there is nonetheless a
physical distinction between these phases, generalizing the distinction between an area vs. perime-
ter law falloff for Wilson loops in a pure gauge theory. A more detailed presentation of these results
can be found in ref. [6].

The Edwards-Anderson model of a spin glass [7] is based on the following Hamiltonian

Hspin =−∑
i j

Ji jsis j−h∑
i

si , (1)

where the Ji j are random couplings, drawn from some probability distribution P(J), and the si =±1
are Ising spins. At h→ 0 the model is obviously invariant under the global symmetry si→ zsi, z ∈ Z2,
but in general the spatial average of si vanishes, due to the random couplings. It might be that the
expectation value of a spin si at a particular site i is non-zero, but this would also vanish upon av-
eraging over the random couplings. Despite this fact there is a way to characterize the spontaneous
breaking of the global Z2 symmetry. Define

Zspin(J) = ∑
{s}

e−Hspin/kT , si(J) =
1

Zspin(J)
∑
{s}

sie−Hspin/kT

q(J) =
1
V ∑

i
s2

i (J) , 〈q〉=
∫

∏
i j

dJi j q(J)P(J) , (2)

where q(J) is the Edwards-Anderson order parameter [7]. When the expectation value 〈q〉 is non-
zero in the infinite volume V → ∞ and h→ 0 limits, the system is in the spin glass phase, and the
Z2 global symmetry is spontaneously broken.

We will illustrate the corresponding construction in SU(2) gauge Higgs theory with a unimod-
ular Higgs field φ, although most of what we discuss is readily generalized to U(1) and SU(N > 2)
theories. The action is

S = −β ∑
plaq

1
2

Tr[Uµ(x)Uν(x+ µ̂)U†
µ (x+ ν̂)U†

ν (x)]− γ∑
x,µ

1
2

Tr[φ†(x)Uµ(x)φ(x+ µ̂)] , (3)

where φ is an SU(2) group-valued field. This theory has the following invariances:

Uµ(x) → L(x)Uµ(x)L†(x+ µ̂) , φ(x)→ L(x)φ(x)R , (4)
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where L(x) ∈ SU(2)gauge is a local gauge transformation, while R ∈ SU(2)global is a global trans-
formation belonging to the custodial symmetry group. A custodial symmetry is a symmetry of the
action under transformations of the scalar field alone, the group in this case is SU(2). Let

exp[−H(φ,U)/kT ] = 〈φ,U |e−H/kT |φ,U〉
= ∑

n
|Ψn(φ,U)|2e−En/kT , (5)

where the Ψn are energy eigenstates. H(φ,U) has a vast number of near-degenerate minima at any
fixed U . In analogy to spin models, we insert a small custodial symmetry breaking term

Hspin(φ,U,η) = H(φ,U)−h∑
x

Tr[η†(x)φ(x)] (6)

with η(x) an SU(2)-valued field. We then define

Zspin(U,η) =
∫

Dφ(x) e−Hspin(φ,U,η)/kT , φ(x;U,η) =
1

Zspin(U,η)

∫
Dφ φ(x)e−Hspin(φ,U,η)/kT

Φ(U) =
1
V

[
∑
x
|φ(x;U,η|

]
η∈N (U)

, 〈Φ〉=
∫

DUi(x) Φ(U)P(U) , (7)

which should be compared to eqs. (2). P(U) is a gauge invariant probability distribution for the
link variables, described below, which is obtained from the partition function after integrating out
the scalar field. The expression N (U) represents a set η(x) fields defined by

N (U) = argmax
η

∑
x

∣∣∣∣∫ Dφ φ(x)e−Hspin(φ,U,η)/kT
∣∣∣∣ , (8)

and the elements of this set at a given U transform into one another by custodial transformations.
It can be shown that Zspin(U)≡ Zspin(U,η ∈N (U)) and the order parameter Φ(U) are both gauge
invariant, even at finite h, and independent of the choice of η ∈N (U).

P(J) in a spin glass, for a pair of sites i, j, is typically drawn from a product of Gaussian
distributions for each Ji j, or else Ji j =±J with equal probability. In a gauge Higgs theory we find
P(U) from the condition that expectation value of some gauge invariant operator Q(U) is given by

〈Q〉 = Tr Qe−Hspin/kT

Tr e−Hspin/kT

=
1
Z

∫
DUi(x)Q(U)

∫
Dφ(x)e−Hspin(φ,U,η∈N (U))/kT

=
1
Z

∫
DUi(x) Q(U)Zspin(U)

=
∫

DUi(x) Q(U)P(U) , (9)

and therefore

P(U) =
Zspin(U)

Z
. (10)

With this choice, 〈Q〉 agrees with the standard expectation value of Q, at h→ 0, in a gauge Higgs
theory. The criterion for spontaneously broken custodial symmetry is then

lim
h→0

lim
V→0
〈Φ〉

{
= 0 unbroken symmetry
> 0 broken symmetry

, (11)
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Figure 1: (a) Extrapolation of 〈Φ〉 to nsym → ∞ above (γ = 1.5) and below (γ = 1.1,1.25) the custodial
symmetry breaking transition at β = 1.2,γ = 1.4, in SU(2) gauge Higgs theory. The lattice volume is 164;
error bars are smaller than the symbol sizes. (b) Transition lines above which (i) |〈φ〉C| > 0 in Coulomb
gauge (triangular data points), and (ii) 〈Φ〉> 0, i.e. broken custodial symmetry (filled circles). Note that the
region where |〈φ〉|> 0 lies entirely within the broken custodial symmetry phase, as it must from the bound
derived below.

which is entirely analogous to the Edwards-Anderson spin glass criterion

lim
h→0

lim
V→0
〈q〉

{
= 0 non-spin glass phase
> 0 spin glass phase

. (12)

The spin glass order parameter Φ is evaluated numerically as follows: A Monte Carlo simu-
lation of the SU(2) gauge Higgs theory (3) is carried out in the usual way. The data taking sweep
is actually a series of nsym sweeps, holding the spacelike links Ui(x, t = 0) fixed on the t = 0 time
slice, but updating all other variables. Denoting by φ(x,0,n) the Higgs field at time t = 0 on the
n-th sweep, and dispensing with η, we compute

φ(x,U) =
1

nsym

nsym

∑
n=1

φ(x,0,n) , (13)

with Φ(U) from (7). Averaging Φ(U) over all data-taking sweeps of this kind gives an estimate for
〈Φ(nsym)〉. Carrying out such simulations at a variety of nsym values, and fitting the data to

〈Φ(nsym)〉= 〈Φ〉+
κ
√nsym

, (14)

gives an estimate for 〈Φ〉. To determine the transition line we fix β and vary γ, until the extrapolated
value for 〈Φ〉 begins to move away from zero. An example of the data at β = 1.2 and three values
of γ is shown in Fig. 1(a). The custodial symmetry breaking transition line, joining transition
points determined as just described, is shown in Fig. 1(b), which also displays the Coulomb gauge
transition line above which |〈φ〉| is non-zero.

Spontaneous breaking of custodial symmetry has the following properties: Consider 〈φ〉F
evaluated in a class of physical gauges defined by conditions of the form F(U) = 0. The conditions
are imposed on spacelike link variables on each time slice, removing all local gauge symmetry, but
leaving some remnant global symmetry on a given time slice, as in Coulomb gauge or a maximally
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fixed axial gauge. We will refer to these as “F-gauges,” and they have the property that the field
operators q,q,φ, operating on the ground state, create physical states. We can prove that [6]

1. for all physical F-gauges, 〈Φ〉 ≥ |〈φ〉|F ; and

2. there exists at least one F gauge such that 〈Φ〉= 〈φ〉F .

This means that broken custodial symmetry is a necessary condition for 〈φ〉F 6= 0 in any F-gauge,
and a sufficient condition for 〈φ〉F 6= 0 in at least one F gauge.

Having defined custodial symmetry breaking, we now we distinguish between two varieties
of confinement in a gauge Higgs theory. The first is ordinary color or “C” confinement, meaning
that all particles in the asymptotic spectrum are color neutral. This property holds in both the
confinement and Higgs regions. The second we call “separation-of-charge” or “Sc” confinement
[8,9], and this is a generalization of the Wilson loop area law criterion to theories with matter in the
fundamental representation of the gauge group. Let us consider, in a pure gauge theory, physical
states of the form (Ψ0 is the ground state, R = |x−y|)

ΨV (R) = qa(x)V ab(x,y;U)qb(y)Ψ0 , (15)

where q,q are static quark/antiquark operators transforming in the fundamental representation, the
V operator transforms like a Wilson line running between sites x,y, and we normalize

〈Ψ0|Tr[V †(x,y;U)V (x,y;U)]|Ψ0〉= N , (16)

where (in an SU(N) gauge theory) N is the number of colors. The energy expectation value of this
state, above the vacuum energy, is approximated by the lattice logarithmic time derivative

EV (R) = − log
[

1
N
〈Tr[U†

0 (x, t)V (x,y, t;U)U0(y, t)V †(x,y, t +1,U)]〉
]
. (17)

The minimum possible energy Emin(R) is the static quark potential, as determined from the behavior
of large Wilson loops. Since, in a pure gauge theory, Emin(R)∼σR at large R, and EV (R) is bounded
from below by Emin(R), it follows that

lim
R→∞

EV (R) = ∞ for all V (x,y;U) operators . (18)

This is “separation of charge” confinement in a pure gauge theory. It is a stronger condition than C
confinement.

Our proposal is that (18) is also the definition of Sc confinement in gauge Higgs theories, and
other gauge + matter theories. Here it is essential that the operator V (x,y;U) depends only on the
spacelike link variables, and not on the matter fields, for otherwise one could have, e.g.

V ab(x,y;φ) = φ
a(x)φ†b(y) , (19)

which, when inserted in (15), creates two color singlet quark-scalar systems, localized at points
x,y, with a negligible R-dependent interaction energy.

It turns out that spontaneous breaking of custodial symmetry, 〈Φ〉> 0, implies C confinement,
while a phase of unbroken custodial symmetry may be either Sc confining or massless. To justify
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this statement we consider quantization in the physical F gauges, where field operators q,q,φ,
operating on the vacuum, create physical states. We begin from the fact that although F-gauges
remove all local symmetry, they leave some global subgroup of the gauge symmetry unfixed. This
global symmetry includes at a minimum, in an SU(N) gauge Higgs theory, the center subgroup

φ(x, t)→ z(t)φ(x, t) , U0(x, t)→ z(t)U0(x, t)z†(t +1) , z(t) ∈ ZN . (20)

which can be spontaneously broken on a time slice. Now unbroken custodial symmetry implies in
particular that for an operator Q(φ,U) which depends only on φ and the spacelike links U on a time
slice,

〈Ψ0|Q(zφ,U)|Ψ0〉= 〈Ψ0|Q(φ,U)|Ψ0〉 , z(t) ∈ ZN . (21)

But if this is true for the center subgroup of custodial symmetry, it is also true for the global remnant
gauge symmetry (20), because the action of these transformations on the Higgs field and spacelike
links on a time slice is identical. Likewise, broken custodial symmetry implies broken remnant
gauge invariance, and this is true in all F-gauges.

A physical state is charged if it transforms covariantly under the remnant gauge symmetry.
In the spin glass phase of an SU(N) gauge theory, custodial symmetry is broken, remnant gauge
symmetry is broken, and the vacuum state is not a state of definite (zero) charge. This means that
the field operators q,q,φ, which transform covariantly under gauge transformations, do not create
a state of definite charge when acting on the vacuum. This is particularly clear in the broken phase
in an F gauge in which 〈φ〉F 6= 0. We introduce states

|chargedxy〉 = qa(x)V ab(x,y;U)qb(y)|Ψ0〉
|neutralxy〉 = (qa(x)φa(x))(φ†a(y)qa(y))|Ψ0〉 , (22)

and consider V =VF operators, where

VF(x,y, t;U) = g†
F(x, t;U)gF(y, t;U) , (23)

and where gF(x;U) is the gauge transformation the F gauge. We imagine taking y→ ∞, leaving
either an isolated quark, or a color singlet quark-scalar state, at site x. In the spin glass phase,
however, these states have a non-zero overlap, even in the y→ ∞ limit. Evaluating the overlap in
an F gauge where V = 1,

lim
|x−y|→∞

〈neutral|charged〉 ∝ lim
|x−y|→∞

〈φ†a(x)φa(y)〉F = 〈φ†a〉F〈φa〉F

> 0 . (24)

This non-zero overlap shows that the “charged” state containing an isolated quark at point x is not
really charged; it has a finite overlap with states created by color singlet operators acting on the
vacuum at point x. In the broken phase one cannot distinguish charged from neutral states by their
differing transformation properties under the remnant symmetry. It can also be shown that EVF (R) is
finite at R→∞. So in the spin glass phase there always exist F-gauges in which the field operators
create finite energy states, and 〈φ〉F is non-zero. The broken phase is therefore not Sc confining,
and it does not contain isolated charged particles in the spectrum that can be distinguished by their
gauge transformation properties from color singlet particles. This C confinement.
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However, within the broken phase there are also F-gauges in which 〈φ〉F = 0. It of course
makes no sense to say that the theory is C confining in one gauge, but not in another. The resolution
to this conundrum must be that a state such as Ψ = gF(x;U)φ(x)Ψ0 is orthogonal to the vacuum
not because the remnant global gauge symmetry is unbroken, but rather because the gF(x;U)φ(x)
operator creates a state of infinite energy compared to the vacuum energy. This is easy to verify in
axial gauge, where one can prove that 〈φ〉F = 0 and limR→∞ EVF (R) = ∞ everywhere in the phase
diagram. The underlying reason is that a quark operator in this gauge creates a line of electric flux
stretching to infinity, and the energy of of such a line is infinite anywhere in the phase diagram.

In the unbroken phase the vacuum is invariant under the remnant ZN gauge symmetry, and there
exists a charged sector, created e.g. by the isolated q,q,φ operators in any F-gauge, orthogonal to
all neutral states. In fact one can prove that in this phase

lim
|x−y|→∞

〈neutral|charged〉= 0 , (25)

for any choice of V operator in (22). If all charged states are infinite energy, then the symmetric
phase is an Sc confinement phase. If instead there exist finite energy charged states, orthogonal to
all neutral states, then charged particles will exist in the spectrum, which implies that the system
is neither in a C confinement nor an Sc confinement phase; the remaining possibility is a massless
phase. Such phases exist in the abelian Higgs model in 3+1 dimensions [10], and lattice SU(2)
gauge Higgs theory in 4+1 dimensions [11].

The conclusion is that the spin glass phase is a phase of broken custodial symmetry, broken
global ZN gauge symmetry, and C confinement. This is the Higgs phase. The phase of unbroken
custodial symmetry may be either Sc confining or massless, depending on the coupling and space-
time dimension. In the absence of a massless phase, the transition from the unbroken phase to the
spin glass phase coincides with the transition from Sc confinement to ordinary color confinement.
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