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We compute the coupling αqq defined in terms of the static quark force by simulating the SU(3)
Yang-Mills theory at lattice spacings down to 10−2 fm, keeping the volume large. In order to
systematically improve the approach to the continuum, we subtract the leading cutoff effects
in Symanzik’s effective theory, resumming the leading log(a/r)-term by renormalization group
improvement. Subsequently we extrapolate with ḡ2(a−1)γ̂1 (a/r)2 corrections to the continuum
limit. We finally investigate the applicability of continuum perturbation theory, extract the pure-
gauge Λ-parameter at different values of αqq and different orders of perturbation theory and com-
pare to other methods.
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1. Introduction

Since a few years the most precise and reliable determinations of the strong coupling arise
from low-energy experiments combined with lattice gauge theory. The determined value,

α(5)
MS

(MZ) = 0.1182(8) FLAG 19 (lattice) [1] , (1.1)

agrees well with the phenomenological/perturbative analysis of experimental results at larger en-
ergy scales evolved to MZ ,

α(5)
MS

(MZ) = 0.1174(16) PDG 16 (non-lattice) [2] . (1.2)

Bazavov et al. used the short-distance potential computed on the lattice and matched to perturbation
theory [3]. The cited result,

α(5)
MS

(MZ) = 0.1166(10) [3] (1.3)

enters the average in (1.1), but is not in too good agreement with it. This motivates a precision
study of the short-distance potential and its comparison to perturbation theory. In general, if we
want to reduce the error of αMS further, we need to understand perturbative errors better [4].

1.1 αMS from the static potential

The potential is of particular interest because its perturbative expansion is known to a high
order of perturbation theory (see [5] and references therein). Counting the leading one-gluon ex-
change potential as no loop, the accuracy is three loops.

Unfortunately there are also some caveats. First, the static potential is infrared divergent,
starting at three loops [6]. It is known how to re-sum the divergent graphs, but the final expression
involves an enhanced log(α)α4-term on top of the α4 one; moreover there is a remaining infrared
sensitivity hidden in the choice of the “ultra-soft” scale made in the resummation based on pN-
RQCD [5]. Second, the potential is defined from the large-t behavior of Wilson loops, W (r, t), and
the limit needs to be controlled. Third, since only the perturbative expansion of the large-volume
potential is known, one needs very large lattices in order to reach small distances at a few lattice
spacings. The third point can be avoided by finite-volume couplings and a step-scaling strategy [7].

To be more specific about the second point, we consider the coupling

ḡ2
qq(1/r) = 3πr2F(r) , F(r) =

d
dr

V (r) . (1.4)

and its β -function, βqq(ḡqq(µ)) = µ d
dµ ḡqq(µ) in the form

βqq(ḡqq) = −ḡ3
qq [b0 +b1ḡ2

qq +b2ḡ4
qq +(b3 +b3Ll)ḡ6

qq +(b4 +b4Ll +b4LLl2)ḡ8
qq + . . .] (1.5)

b2(4π)3 = 1.6524 , b3(4π)4 = 4.9449 , b3L(4π)4 = 1.2538 , (1.6)

b4L(4π)5 = 9.8088 , b4LL(4π)5 =−1.6463 , l = log(3ḡ2
qq/(8π)). (1.7)

The coefficients bi are evaluated for Nf = 0 and b4 is not known. βqq is obtained from the pertur-
bative expansion of the static force (including the so-called soft and ultra-soft contributions) and
setting the ultra-soft scale to the recommended value µUS = µ × 3ḡ2

qq/(8π) [5]. The scale of the
coupling is µ = 1/r. In the above formulae, factors of 4π are arranged such that we see coeffi-
cients of αqq = ḡ2

qq/(4π) inside the bracket. The b3 and b4L terms give significant contributions for
a typical range 0.2 ≤ αqq ≤ 0.3.
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1.2 Yang-Mills theory

Understanding the above pros and cons may be possible in a simplified setting, namely the
pure gauge theory, where we can afford to simulate very small lattice spacings. Furthermore,
recent determinations of the Λ-parameter in the N f = 0 theory,

󰁳
8t0Λ(0)

MS
= 0.6227(98) [8] (1.8)

󰁳
8t0Λ(0)

MS
= 0.5968(33) ← w0 ΛMS = 0.2154(12) [9] . (1.9)

are not in agreement (we converted from w0-units to t0 units with the help of our simulations
described below) [10]. While there is little doubt about the computation of [8], since α ≈ 0.1 was
reached by non-perturbative step-scaling, a confirmation/improvement of (1.8) would be welcome,
as the pure gauge theory result enters the decoupling strategy for renormalization problems [11].
For these reasons we study again the pure gauge theory and consider the extraction of α from the
short-distance potential.

2. Simulations

We simulated lattices with L ≈ 4r0 ≈ 2 fm and resolutions L/a ranging from 32 to 192. The
smallest lattice spacing is ≈ 10−2 fm. In comparison to [3] we reach a factor ≈ 1/15 further down
in the relevant variable a2. However, we use a standard Wilson action, in comparison to the tree-
level Symanzik improved action of [3]. The smallest lattice spacing is new in comparison to the
results presented in [12]. Topology freezing is avoided by open boundaries in time [13].

One reason why we opted against Symanzik improvement is that we need the limit

V (r) =
1
a

lim
t→∞

log(W (r, t)/W (r, t +a)) . (2.1)

Unfortunately, even in the pure gauge theory, where we employ the one-link integral [14] for the
time-like links, the signal-to-noise ratio grows rapidly with t: thus, both the smearing of the spatial
links of the Wilson loops and the GEVP [15, 16] are crucial in obtaining a reliable result. The latter
method is based on correlation functions with a positive spectral representation. Since violations of
positivity are quite strong for improved actions [17, 18], we avoid their use. In fig.1 we demonstrate
a typical case for the standard Wilson action. Extracting the ground state potential is not trivial at
large r/a, even when strict positivity gives a rigorous mathematical basis for the GEVP method.

3. Strategy

Our strategy is similar to [12]. We eliminate the unphysical self-energy of the static potential,
consider the force and analyse it in terms of the physical (regularisation-independent) coupling ḡqq,
see (1.4). From this coupling we evaluate the Λ-parameter, by integrating the renormalization group
equation exactly, after truncating the β -function at a given order. The perturbative uncertainty in Λ
due to the missing b4 is a relative error ∼ α3

qq. However, since we are dealing with an asymptotic
series, the more reliable error estimate is the effect of the last known term, ∆βqq =−(b3+b3Ll)ḡ9

qq,
i.e. the difference between three-loop and four-loop running.
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Figure 1: Extraction of V (r). On the left for a = 0.03 fm and r = 0.24 fm (3x3 GEVP). On the right for
a = 0.01 fm and r = 0.1 fm (2x2 GEVP). The smaller time needed in the GEVP is fixed to 4a on the left and
to 5a on the right.

We set the scale by our own determination of t0 [19] and evaluate ḡqq at r/
√

8t0 = 0.4, . . . ,0.25.
At rswitch = 0.25

√
8t0 we switch to using the rather precise large-volume step scaling [12] and

compute

αqq((snrswitch)
−1) = σ(αqq((sn−1rswitch)

−1,s) , s = 3/4. (3.1)

Apart from the plateau determinations as in fig. 1, the critical points of the computation are the
continuum extrapolations σ = lima→0 Σ of the lattice step-scaling function

Σ(η ,s,a/r) = αqq(1/(sr),a/(sr))
󰀏󰀏
αqq(1/r,a/r)=η . (3.2)

and the truncation of the perturbative series.

4. Continuum extrapolations

The standard definition of the force F(r) from the on-axis lattice potential V (r) is

Fn(r) =
1
a
[V (r+a/2)−V (r−a/2)] , (4.1)

for r = (nr +
1
2)a , nr = 2,3, . . . In [12] and in many other works, tree-level improvement is im-

plemented before continuum extrapolations. This, however, does not account for the logarithmic
corrections of the form [ḡ2(1/a)]γ̂a2/r2 to the static potential, which are due to the anomalous
dimensions of the dimension-six fields in Symanzik’s effective theory [20].

Since the continuum extrapolation is crucial, we want to treat the leading O(a2) scaling viola-
tions as accurately as possible. We thus modify naive tree-level improvement by renormalization
group improvement, resumming the log(a/r) terms [20]. We start by improving the discrete deriva-
tive (4.1) in the form

Fimpr(r) = Fn(r)−
1

24
[Fn(r+a)−2Fn(r)+Fn(r−a)] . (4.2)
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Figure 2: Left: Continuum extrapolations (4.8) at different ηi: upward pointing triangles and smaller error-
bars have the Ba4/r4 term (see text) turned off. Right: resulting slopes ρi and the fits (4.9) with one (blue
band) and three free parameters (green band).

The improved Fimpr(r) is accurate up to O(a4) except for O(a2) effects which originate from V (r)
itself. The latter are now known in the form [20]

αqq(1/r,a/r)−αqq(1/r,0) = αs(r−1)
a2

r2 ×
󰀫󰀗

αs(a−1)

αs(r−1)

󰀘γ̂1

A1(r)+
󰀗

αs(a−1)

αs(r−1)

󰀘γ̂2

A2(r)

󰀬
(4.3)

×(1+O(αs(a−1)), γ̂1 =
7

11
≈ 0.636 , γ̂2 =

63
55

≈ 1.145 .

Here we have written the expansion in terms of the renormalised coupling αs in a scheme s which
is irrelevant at the considered order. The functions Ai(r) are (RGI) matrix elements of the d = 6
operators in Symanzik’s effective action. At short distances they can be expanded

Ai(r) = Ai,0 +Ai,1αs(1/r)+Ai,2αs(1/r)2 + . . . (4.4)

and for our Wilson action we have

A1,0 = 0 , A2,0 =
3
4
. (4.5)

At small lattice spacing, the first term in the curly bracket in (4.3) dominates, but the second one is
suppressed by one power less of α(r−1) at small r.

We therefore also use the known A2,0 and define

αRGimpr
qq =

αqq

1+A2,0

󰁫
αqq(a−1)

αqq(r−1)

󰁬γ̂2 a2

r2

, (4.6)

where the coupling at the cutoff αqq(a−1) is obtained from the measured αqq(r−1)= 3
4 Fn(r)r2 at r =

2.5a by four-loop evolution (here we use the unimproved force Fn). Discretisation errors of αRGimpr
qq

are then modelled as a2

r2

󰁫
αs(a−1)
αs(r−1)

󰁬γ̂1
αqq(r−1)A1(r), with A1(r) = O(αqq(r−1)). The evaluation of Σ

requires αqq as a continuum function of r, which is easily obtained by a local interpolation. The
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continuum limit σ(η ,s) is reached, asymptotically, as

ΣRGimpr(η ,s,a/r) = σ(η ,s)+ρ(η)

󰀗
αqq(a−1)

η

󰀘γ̂1 a2

r2 , ρ(η) = O(η2). (4.7)

We assume that form for the continuum extrapolations, which we split into a three-step procedure.
1. We choose values ηi covering the accessible range of η with rather small separation; in

practice we have 0.215 ≤ ηi ≤ 0.345, separated by ηi+1 −ηi = 0.01. At these values we fit (fig. 2)

ΣRGimpr(ηi,s,a/r) = σi +ρi

󰀗
αqq(a−1)

ηi

󰀘γ̂1 a2

r2 . (4.8)

Of course, we should restrict the fits to data with reasonably small lattice spacings. In practice, an
exclusion of the potential at the cutoff V (a) implies r/a ≥ 3.5, which is enough for our extrapola-
tions (see also below).

2. We then test that the slopes ρi are compatible with the expected form,

ρi = η2
i × (ρ(1)+ρ(2)ηi + . . .) , (4.9)

fitting to this form with parameters ρ( j), see fig. 2. At this point the discretization errors are known
in the form

Σ(η ,s,a/r) = σ(η ,s)+
󰀗

αqq(a−1)

η

󰀘γ̂1 a2

r2 (ρ(1)η2 +ρ(2)η3 + . . .) . (4.10)

3. This formula, with the determined parameters ρ(1), ρ(2), is now used to extract the step-
scaling functions at the desired points α((skrstart)

−1), k = 1,2, . . ..

Systematic errors

The above procedure is based on a number of assumptions. We assume that after the renor-
malization group improved removal of the leading (in the expansion (4.6) ) a2 errors, the left over
ones are reasonably modeled by the leading term in (4.3). Deviations are higher orders in αqq(a−1)

which do not vary so much with a. They are thus expected to be effectively taken into account in
the fit (4.8). However, we also discard a4 terms in that fit. We try to estimate their effect in our
errors, by adding a term Ba4/r4 to the force with a coefficient B = 0± 3.3, where the ±3.3 error
is the size of the a4-term found at tree-level. The effect of B is propagated into all quantities by
standard, quadratic, error propagation. Note that it also reduces the weight of points with large a/r
in the extrapolations (4.8) . It becomes unnecessary to apply a cut beyond the mentioned r/a ≥ 3.5.
The effect of B is included in the above figures as well as the following results.

5. Results and conclusions

The step-scaling function at the mentioned points ηi is shown in the left panel of fig. 3. It
is somewhat below the perturbative estimates at different orders. Despite the additional lattice
spacing, error bars are larger than in the previous analysis [12], due to the additional systematic
error coming from the Ba4/r4 term. A semi-quantitative agreement with perturbation theory is
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Figure 3: Left: Step scaling function compared with PT. Right: Λ-parameters determined at various values
of αqq together with different orders of PT.

found over quite a large range of α at the level of 5-10% in Λ, as seen on the right panel of
fig. 3. For central values we should concentrate on the results using the 4-loop β -function. An
extrapolation of the last few points in α3 appears to agree better with the result of [9] than with [8].
However, the precision achieved is not good enough to make a real distinction.

The fact that the b4L and b4LL terms are as big as the 4-loop contribution to the β -function in
the relevant range of αqq suggests that the limitation of the asymptotic perturbative series is reached
with the 4-loop β -function in most of our range, while 5-loop accuracy may help at the edge of
α ≈ 0.21. With data at α ≈ 0.25 and above, the difference of numbers with 3-loop and 4-loop (or
equivalently 4-loop and 4-loop +b4L,b4LL terms puts a bound on the precision.

On the other hand smaller values of αqq are afflicted with too large errors at present. The main
reason is that our estimate of the a4/r4 uncertainty is too large compared to the very high precision
required to obtain a value of Λ below the 5% level.
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