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Figure 1: Possible scenarios for the order of the thermal QCD transition as a function of the quark masses.

1. Introduction

An outstanding open problem of QCD is the nature of its phase diagram as a function of
temperature and baryon chemical potential. A change in dynamics from a hadron gas to a regime
governed by different degrees of freedom, as in a quark gluon plasma, is expected to be caused
by an effective restoration of chiral symmetry in a region with temperatures 7 < 160 MeV and
baryon chemical potential pp <1 GeV. Such low energy scales necessitate a non-perturbative first-
principles approach like lattice QCD. Unfortunately, a severe sign problem prohibits simulations
by importance sampling for non-vanishing chemical potential [1]. Despite tremendous efforts over
several decades, no genuine solution to this problem is available.

In this contribution I will not cover the sign problem and the many attempts to alleviate it
algorithmically. Instead I will report on a different strategy to learn about the phase diagram,
which is to consider QCD thermodynamics in the parameter space {7, lg, ,u;,Nf,mg ,g%,N.}. By
studying the phase structure in every parameter region, where some or another method works, an
increasing number of constraints on the physical QCD phase diagram is obtained. As a by-product,
such studies also provide theoretical insight about the interplay of the involved symmetries and
degrees of freedom. I will begin with a discussion of the nature of the chiral phase transition in the
chiral limit, before turning to proper finite density.

2. The Columbia plot and its extended versions

2.1 The order of the thermal transition at zero density

The nature of the thermal QCD transition with Ny =2+ 1 quark flavours as a function of the
quark masses is summarised in the so-called Columbia plot, Fig. 1. In the quenched limit QCD
reduces to SU(3) Yang-Mills theory in the presence of static quarks and shows a first-order phase
transition [2] associated with the spontaneous breaking of the Z(3) center symmetry. Once quarks
have a finite mass, the center symmetry is explicitly broken and the first-order phase transition
weakens as the quarks get lighter, until it is lost at a Z(2) second-order line of critical mass values.

In the opposite, chiral limit, the situation is more complicated, and for a long time expectations
have been mostly guided by an analysis based on the epsilon expansion [3]. It predicts the chiral
transition to be first-order for Ny > 3, whereas the case of Ny = 2 is found to crucially depend on
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Figure 2: Left: Order of the thermal transition as function of Ny and quark mass (schematic). Right:
Second-order chiral critical line from unimproved staggered fermions [13].

the fate of the anomalous U(1)4 symmetry: if the latter remains broken at 7;, the chiral transi-
tion should be second order in the O(4)-universality class, whereas its effective restoration would
enlarge the chiral symmetry and push the transition to first-order. A later high order perturbative
analysis of renormalisation group flow [4] instead finds a possible symmetry breaking pattern to be
U(2)L®@U(2)g — U(2)y in the case of a restored U(1)4, which would amount to a second-order
transition in a different universality class. For non-zero quark masses, chiral symmetry is explic-
itly broken and a first-order chiral transition weakens to disappear at a Z(2) second-order critical
boundary, while a second-order transition disappears immediately.

Computing these boundaries numerically is punishingly expensive. Locating a transition re-
quires scans in temperature and mass, deciding its order and universality requires finite size scaling
analyses with sufficiently large and different volumes. There is critical slowing down near a critical
point as well as approaching the continuum, and the required quark masses are mostly smaller than
physical. On coarse N; = 4 lattices, the first-order region is explicitly seen for Ny = 3 unimproved
staggered [5, 6] as well as O(a)-improved Wilson [7] fermions, the narrower Ny = 2 region with
unimproved staggered [8, 9] and unimproved Wilson [10] fermions. However, the location of the
boundary line varies widely between these, indicating large cut-off effects. On the other hand, sim-
ulations with an improved staggered action (HISQ) do not see a first-order region on N; = 6 lattices
even for Ny = 3 [11]. The only point with a continuum extrapolation (besides the pure gauge limit)
is the physical point, which has been identified to be in the crossover region [12].

2.2 The chiral transition as a function of Ny

In an alternative version of the Columbia plot, the chiral transition is considered as a function
of the number of degenerate quark flavours and their mass. The first scenario from Fig. 1 then
translates into Fig. 2 (left). The chiral symmetry and, with it, the strength of the transition increases
with the number of flavours. One may now consider a partition function with the quark determinant
raised to continuous, non-integer powers of Ny, in order to study the approach to the chiral limit [9].
For sufficiently large Ny, the chiral limit corresponds to a first-order, three-state coexistence line
(with (y) = 0,%const). The weakening of this transition with decreasing Ny implies a tricritical
point, in which it ends. The chiral critical line, which separates the first-order from the crossover
region, enters the tricritical point with a known tricritical exponent. Of course, there is no physical
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Figure 3: Left: Chiral critical point for Ny = 3 O(a) improved Wilson fermions [15]. Right: Magnetic
equation of state approaching the chiral limit. Lines represent fits to O(N)- (second-order scenario) or Z(2)-
scaling with a finite critical quark mass (first-order scenario) [16].

meaning in this non-integer value of N}ﬁc other than to be smaller or larger than two, which puts
the chiral transition for Ny = 2 in the first- or second-order region, respectively.

A study on N; = 4 with unimproved staggered fermions [9] fully confirms these considera-
tions, cf. Fig. 2 (right). For sufficiently small masses tricritical scaling is observed and can be
used to extrapolate to the chiral limit. Unfortunately, the scaling region is small and little is gained
over direct simulations at Ny = 2. On N; = 6 lattices the scaling region is too low in quark mass
to be simulated straightforwardly. However, beyond the scaling region the chiral critical line is
observed to be linear over a large range of Ny-values. A linear extrapolation will then produce
an upper bound for N}riC. In order to draw conclusions, one would need to know the size of the
scaling region, where the chiral critical line is curved. In any case, a strong trend is seen for all
Ny: decreasing the lattice spacing dramatically shrinks the chiral critical quark mass bounding a
first-order chiral transition. Similar observations up to Ny = 10 are made for Ny = 4 [14] and also
for Ny = 3 with O(a)-improved Wilson quarks [15] Fig. 3 (left).

While these calculations do not yet permit unambiguous continuum extrapolations, they pro-
vide a consistent picture across all discretisations: the chiral transition probed by lattice simulations
weakens considerably as the continuum is approached. This makes a second-order scenario for the
Ny = 2 chiral limit more likely and raises the interesting question, whether also Ny = 3,4 might
possibly have second-order transitions, contrary to what was expected for a long time.

2.3 From the physical point towards the chiral limit

There is then no contradiction between unimproved and improved staggered actions, which
do not see a first-order region so far. Recent investigations searching for the chiral phase transition
with improved actions start at the Ny = 2+ 1 physical point and then reduce the light quark masses.
Thus either a Z(2)-critical point bounding the first-order region is approached, or a second-order
transition in the chiral limit.

In [16, 17] the scaling behaviour was checked as the chiral limit is approached. Simulations
were carried out using the HISQ action on lattices with N; = 6,8, 10 and light quark masses down
to mz = 55 MeV. The analysis uses a renormalisation group invariant combination of chiral con-
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densates as order parameter representing the magnetisation, and the light quark masses in units of
the strange quark mass as symmetry breaking field,

M =2(mg(§y)1 —m(Wy))/fi,  H=mi/m;. 2.1

Near a critical point the magnetic equation of state is then dominated by universal scaling functions

M(t,h) =h" fo(2)+..., xmlt,h)= 31\; ='W () 4 (2.2)
with a scaling variable z =t/ h!/B3 expressed in terms of the reduced temperature and external
field, t = to(T — T) /T, h = H /hy, which contain the unknown critical temperature in the chiral
limit, 7%, and two non-universal parameters fo, /.

Fig. 3 (left) shows the ratio M/ x»s, whose approach to a critical point is sensitive to the scaling
functions pertaining to the appropriate universality class. While it is difficult to distinguish between
O(4) and Z(2), it is apparent that any finite critical quark mass bounding a first-order region has
to be excessively small to be consistent with the observed behaviour. There is a similar scaling
expression for the approach of the pseudo-critical crossover temperature of some observable X to
the critical temperature in the chiral limit,

Ty(H) =10+ X700/ | 70 = 1323MeV . 2.3)
20

In [17] the variation with the possible critical exponents is observed to be very small, so that
an extrapolation makes sense even without definite knowledge of the eventual universality class.
Results were checked to be stable when the continuum extrapolation is done before the chiral
extrapolation, leading to the critical temperature as a first result for the chiral limit. Note that its
value is ~ 25 MeV lower than the pseudo-critical temperature at the physical point, which should
be important for phenomenological descriptions of chiral symmetry breaking.

Similar conclusions are drawn in an exploratory study attempting to approach the chiral limit
more economically by reweighting in the light quark mass [18], with a weight factor

det(D) \% _ 4

== — = 0 } . 24

S ] exp | — P (mud) + Olrity) 2.4)
The Banks-Casher relation is used to relate the chiral condensate to the spectral density of the Dirac
operator, which is then reweighted to zero mass. Note, that this involves an infinite volume extrap-
olation by polynomial fits, whose systematics still needs studying. Nevertheless, the finite size
scaling of the chiral condensate obtained in this approach clearly prefers a second-order scenario.

2.4 The U(1)4 anomaly

As pointed out in section 2.1, the fate of the anomalous U (1), around the thermal transition is
expected to play a significant role in determining the order of the chiral phase transition. Simula-
tions of a model realising the QCD chiral symmetry with a tuneable strength of the U(1)4 anomaly
indeed demonstrate that a first-order transition occurs for restored symmetry, which changes to
an O(4)-transition above some critical strength of symmetry breaking [19]. Unfortunately, this
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Figure 4: Splitting between scalar and pseudo-scalar susceptibilities. Left: Overlap operator evaluated on
HISQ ensembles at the physical point [23]. Right: DW fermions reweighted to overlap [24].

"critical strength” of symmetry breaking is nothing universal that could be easily mapped to QCD,
which thus has to be investigated directly.

Several attempts over the last years used using different discretisation schemes, from which
apparently contradicting conclusions were drawn. Studies with chiral domain wall fermions on
N; = 8 with 200 MeV pions [20] find evidence of a broken U(1)4 at the pseudo-critical tem-
perature, and the same result is reported when evaluating the overlap operator on N; = 8 HISQ
ensembles with 160 MeV pions [21]. On the other hand, the screening mass spectrum evaluated
at the pseudo-critical temperature with O(a)-improved Wilson fermions on fine N; = 16 lattices
suggests a significant reduction of the anomaly in the chiral limit [22], and M&bius domain wall
fermions reweighted to overlap on N; = 8, 10 show full symmetry restoration at 7 ~ 220 MeV. Up-
dates on these results, using the difference of scalar and pseudo-scalar susceptibilities as a measure
for the anomaly,

Bas =25 = [ d' (8 (3)7(0) — 6°(x) ~ §°(0)) @5)
are shown in Fig. 4. On the left the overlap Dirac operator is evaluated on HISQ ensembles with
physical quark masses, including an extrapolation to the continuum limit [23]. The full restoration
of the symmetry happens above the chiral crossover temperature, but this is not yet the chiral
limit. Fig. 4 (right) shows the same quantity as a function quark mass, with domain wall fermions
reweighted to overlap on Ny = 12 at T = 220 MeV [24]. The splitting is observed to vanish in the
chiral limit, but in this case the temperature is above the transition. The qualitative features of both
calculations are fully consistent and no contradiction is apparent yet. It would be most valuable to
compare both approaches for a set of identical parameter values. For future investigations it might
also be useful to check further relations between chiral and U (1)4 restoration, provided by certain
Ward identities, which give information on the scaling with temperature as a criterion for exact
symmetry restoration [25].

2.5 QCD with imaginary chemical potential

While it is unphysical, imaginary chemical potential for quark number, u = iy;, it; € R, does
not induce a sign problem and thus can be simulated without difficulty. This has been used to extract
several aspects of the low density phase diagram at real u by analytic continuation [26, 27]. Two
exact symmetries facilitate such studies. Because of CP-invariance, the QCD partition function is
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Figure 5: Left: The QCD phase diagram at imaginary chemical potential. Vertical lines mark first-order
transitions between different center sectors, the dotted lines are the analytic continuation of the transitions
at real (1, whose nature depends on the quark masses. Right: Columbia plot with chemical potential. The
bottom plane corresponds to the first center-transition.

even in chemical potential Z(u) = Z(—pu). Furthermore, for arbitrary fermion masses it is periodic
in imaginary chemical potential because of the global Roberge-Weiss (or center) symmetry [28],

AN Mi 27mn
Z(T,zT)_Z<T,zT+1NC) . (2.6)

This leads to transitions cycling through the N, center sectors, which are distinguishable by the
phase of the Polyakov loop but have equal thermodynamic functions. The transitions are first order
for high temperatures and crossover for low temperatures, see Fig. 5 (left). In the T-direction there
is the analytic continuation of the QCD thermal transition, whose order depends on N and the
quark masses. For first-order chiral and deconfinement transitions (small and large quark masses),
the transition lines meet up in a triple-point, while for thermal crossover the RW-transition ends
in a critical endpoint with 3d Ising universality. The boundary between these scenarios is marked
by a tricritical point. These structures have been established explicitly for unimproved staggered
[29, 30] as well as unimproved Wilson [31] fermions.

This translates into a 3d extension of the Columbia plot, as in Fig. 5 (right). Regions of
chiral and deconfinement phase transitions are now separated by critical surfaces from the crossover
region. The curvature of the chiral critical surface has been shown to be negative both on the Ny =3
diagonal, as well as near the physical point [32] on N; = 4 lattices. Thus the chiral transition
strengthens with imaginary and weakens with real chemical potential. This is opposite to a scenario
with a chiral critical point close to the temperature axis, which would require the chiral transition
at the physical point to stregthen with real y. Unfortunately, because of the receding first-order
region, these calculations could not yet be repeated on finer lattices.

Investigations on finer lattices reveal the same trend as seen at u = 0, namely the chiral tri-
critical line moving towards smaller quark masses, both for unimproved staggered [33] and Wilson
[34] quarks, Fig. 6 (left). For stout-smeared staggered [35] and HISQ [36] actions on N; = 4, even
the larger first-order region in the RW-plane cannot be detected when starting from the physical
point and reducing the pion masses down to my; =~ 50 MeV, as Fig. 6 (right) demonstrates with
second-order scaling.
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Figure 6: Left: Tricritical pion mass values delimiting the first-order chiral region in the RW-plane [33].
Right: Finite size scaling with 3d Z(2) exponents for stout-smeared staggered fermions with m, ~ 50 MeV
and (myq/my)phys on Ny = 4 in the RW-plane [35].

Together with the u = O results, this means that the entire chiral critical surface is shifting
drastically towards the chiral limit as the lattice spacing is decreased, and it is an open question
whether any first-order transition remains in the continuum limit. At the same time, this implies a
softening of the crossover at the physical point, with so far no indication of a chiral critical structure
at real chemical potential.

3. QCD at the physical point

3.1 Emerging chiral spin symmetry

Besides the location and nature of phase transitions, studies of phase diagrams are also con-
cerned with an identification of the dominant dynamical degrees of freedom in each regime, which
are expected to reflect the underlying symmetries. In QCD, in particular, the hadronic regime is
usually associated with broken chiral symmetry, while the quark gluon plasma represents a symme-
try restored state. In this context new investigations point to an interesting intermediate temperature
regime with an emerging SU (4) symmetry, which was first proposed in [37].

Consider a SU(2)cs chiral spin transformation of quark fields defined by

W) —exp (-€), Te={n—insn0} (.1

The QCD Lagrangian is not invariant under such transformations. However, when there is a ther-
modynamic medium implying a preferred Lorentz frame, one finds the colour-electric part of the
quark-gluon interaction as well as a chemical potential term for fermion number to be invariant,
while kinetic terms and colour-magnetic interactions are not. Combining chiral spin symmetry
with isospin, SU(2)cs x SU(2), it can be embedded in a SU(4) symmtery that fully contains the
usual chiral symmetry of the Lagrangian, SU(4) D SU(2) x SU(2)g x U(1)a.

The realisation of these symmetries has recently been tested with spatial [38] and temporal
[39] correlation functions. Fig. 7 shows some examples of spatial correlators,

CF(”z) = Z <0F(nmnyanz,”r)01"(070)> ; (32)

Ty, Nt

with quantum numbers specified by I', evaluated on JLQCD configurations with Ny = 2 domain
wall fermions with physical light quark masses from N; = 4,6,8,12 lattices. At T = 220 MeV,
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Figure 7: Spatial correlation functions of the Ej, E; multiplets of the SU(4) chiral spin symmetry, as a
function of temperature and in comparison to free quark correlators (dashed lines) [38].

i.e. above the chiral crossover, a near-degeneracy pattern of different quantum number channels
is observed, which is consistent with the multiplets of the SU(4)-symmetry worked out in [38].
As the temperature is increased to 380 MeV, these multiplets move closer to each other, while in
both cases they differ clearly from the leading-order perturbative pattern expected for free quarks.
Finally, as the temperature approaches ~ 1 GeV, the different multiplets fall on top of each other
and approach those of free quark correlators, signalling restoration of the full chiral symmetry.

This has implications for the active degrees of freedom in the temperature range just above
the chiral crossover. The nearly intact multiplet structure implies suppression of colour-magnetic
interactions, and the authors interpret the active degrees of freedom as chiral quarks bound to
colour singlets by colour-electric strings. For this reason they term this regime, which has more
resemblance to a hadron gas than to a plasma, a “stringy fluid”.

This finding based on an emergent chiral symmetry is in fact consistent with earlier studies
distinguishing between colour-electric and -magnetic degrees of freedom by the discrete transfor-
mation of Euclidan time reversal (or CT in Minkowski time) [40]. The lowest screening masses
in the framework of dimensionally reduced QCD, valid for temperatures above the crossover, and
thus the dominant degrees of freedom, correspond to colour-electric operators, with colour mag-
netic ones contributing to excited states only [41]. This is contrary to the perturbative ordering of
electric and magnetic scales, ~ gT’, g>T, respectively, which is only realised at much higher temper-
atures. Finally, the picture of a hadron-like stringy fluid is also consistent with sequential melting
scneario of heavy quarkonia at 7 > T),.

3.2 The crossover at small baryon densities

There are three methods that have been used so far to extract information about the phase
structure at the physical point for small baryon density. All of them introduce some approximation
which can be controlled as long as 1 /7 < 1: i) reweighting [42], ii) Taylor expansion in p /T [43]
and iii) anlaytic continuation from imaginary chemical potential [26, 27]. When the QCD pressure
is expressed as a series in baryon chemical potential,

T’ o 2n
p(TfB)z +Z 57 %e(T (%) . x(T) =

(%)
() lus=0"

3.3)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which can also
be computed by fitting to untruncated results at imaginary ug, thus permitting full control of the
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Figure 8: Baryon number fluctuations xf, xg from the lattice in comparison with CEM, RFM models [44]
(left, middle), and x{f fitted with a polynomial model without criticality [45] (right).

systematics between ii) and iii). They are presently known up to 2n = 8 on N; = 16 lattices, Fig. 8,
and in principle also observable experimentally. For a review of the equation of state relating
to heavy ion phenomenology, see [46]. Note also, that this regime appears now accessible by
complex Langevin simulations without series expansion, albeit not yet for physical quark masses
[47]. From the susceptibility of an appropriately normalised chiral condensate follows the pseudo-
critical temperature, similarly as a power series. The latest continuum extrapolated results are

5 0.0135(20) imag. i, stout-sm. stag.  [48]
=1+ (%) +..., K=< 0.0145(25) Taylor, stout-sm. stag. [48, 49] (3.4)
0.016(5)  Taylor, HISQ [50]

Tpe(Up)
Tpe(0)

with 7p,.(0) = 156.5(1.5) MeV [50], and the sub-leading term insignificant to current accuracy.

3.3 The radius of convergence

If a function with a given domain of analyticity in its complex argument is expanded in a
power series, the radius of convergence specifies the distance between the expansion point and the
nearest singularity. This implies that the location (7, ;) of a non-analytic QCD phase transition
constitutes an upper bound on the radius of convergence of the pressure series (3.3). It has been
argued in the literature that this can be turned around in order to search for a critical point: if a
finite radius of convergence can be extracted from the pressure series for real parameter values, it
should signal a phase transition. The standard estimator used in the literature is the ratio test of
consecutive coefficients, whose extrapolation to infinite order yields the radius of convergence,

2n(2n— l)xfn

3.5)
Xgn—O-Z

r=limry,, rn,=
n—eo

In practice, only the first few coefficients are available. Nevertheless, several constraints on a
critical endpoint have been based on r,, and published, a recent compilation can be found in [51].

However, it has recently become clear in model studies that the ratio estimator is inappropriate
for the case at hand. As an example, consider the fugacity expansion of baryon number density. At
imaginary chemical potential, this is just a Fourier series whose coefficients can be computed on
the lattice without sign problem,

I’lB(T, ZGBT)

n . : 2 (* :
%‘HB:iGBT: = lek(T) Sln(kHB/T) s bk(T) = E/O deB Im(T Sln(kGB) . (36)
k
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Figure 9: Left: Comparison of estimators for the radius of convergence in a Cluster Expansion Model.
Right: The CEM radius of convergence as a function of T predicts the RW-transition at imaginary ug [52].

In [52] a cluster expansion model (CEM) was proposed, which takes the first two coefficients as
input from a lattice calculation [53], and expresses all higher coefficients in terms of these,

__sglba(T)*2
bi(T) = OCIEBW )

k=3,4,... (3.7)
The Oc,fB are T-independent and fixed to reproduce the Stefan-Boltzmann limit. Hence, this includes
two-body interactions only, corresponding to NLO in a virial expansion, which should be valid at
sufficiently high temperatures and low densities. Of course, modelling higher coefficients in terms
of the lower ones is not unique, an alternative is provided by the rational function model (RMF)
[54]. The model now predicts the coefficients by>3 or any of the baryon number susceptibilities, a
closed expression to all orders as a polylogarithm is also available [44]. All existing lattice data are
reproduced surprisingly accurately, as the examples in Fig. 8 show.

With all coefficients of the fugacity expansion available, one can study the radius of conver-
gence of CEM, Fig. 9. The ratio estimator fails to converge, because of the irregular signs of higher
order coefficients (it works for equal or alternating signs). On the other hand, the Mercer-Roberts
estimator, which uses three consecutive coefficients of a series [55],

L /4
r, = Cn+1Cn—1 _ch ’ (3.8)
Cn+2Cn — €1

converges and extrapolates to a unique radius of convergence, independent of the observable used.
Fig. 9 (right) shows the result for various temperatures, which intriguingly predicts the Roberge-
Weiss transition in the direction of imaginary chemical potential. Conversely, this implies that the
CEM has no phase transition for real ug < 7. Of course, this is a model and does not exclude
a QCD critical point in this range. (For an application of the RFM to a chiral model which has a
phase transition, see [54].) However, the analysis does imply that there is no sign of criticality in
the presently available lattice data at zero or imaginary chemical potential (see also Fig. 8 (right)).
A more general study investigates how the singularity structure of QCD is reflected in Lee-
Yang zeroes and the radius of convergence [56]. It concludes that the ratio test fails in any finite
volume and also advocates the Mercer-Roberts as well as the Cauchy-Hadamard estimators. Im-
proved versions are constructed for these estimators with enlarged sensitivity to the closest singu-
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Figure 10: Left: Chiral and isospin condensated as a function of 7. Middle: Phase diagram at finite isospin
chemical potential. Right: Scaling of the pion condensate as a signal for a second-order transition [63].

larity, which are able to pick up the known phase transition of Ny = 4 staggered QCD on a N; = 4
lattice with less than ten coefficients.

Having to go term by term in an expansion can be avoided, if the Lee-Yang zero closest to the
origin can be determined directly. Using reweighting, this was the strategy employed in the first
prediction of a critical point on N; = 4 lattices using unimproved rooted staggered fermions [57].
However, a new investigation points out that, for this discretisation, the closest Lee-Yang zero is
caused by a spectral gap between the unrooted tastes rather than by a phase transition [58]. A new
definition of the rooted staggered determinant at finite 1 is suggested, which avoids these artificial
non-analyticies. Application to the stout-smeared action on N; = 4, again using reweighting, shows
the closest singularity to be off the real axis, pushing a possible phase transition beyond ug > 27'.

3.4 Finite isospin density

It was noted long ago that QCD at finite isospin density does not have a sign problem and can
be simulated directly [59]. Finite isospin is also physically relevant for neutron stars or the early
universe with a lepton asymmetry. Consider the (degenerate) light quark action in the form

S = (Yu(Ou +iAy) +mua + BT +HIABED) W, W=l — ta)/2 . (3.9)

A chemical potential for isospsin is realised by having chemical potentials of opposite sign for
the u- and d-quarks. For y; = 0, the action is invariant under a SU(2)y x U(1)y associated with
isospin and baryon number, which gets broken to U(1)z, x U(1)y by u; # 0. In this case there
is a further spontaneous symmety breaking leaving only the baryon U(1)y, signalled by a non-
vanishing expectation value for the charged pions,

(%) = (UpTi oY), (3.10)

which then correspond to Goldstone modes. The A-term in the action introduces an explicit break-
ing of the remaining symmetry and is necessary for simulation purposes only, in order to pick one
of the degenerate vacua. For physical results, simulations have to be extrapolated to A — 0, a task
quite similar to approaching the chiral limit at ¢ = 0, and hence difficult.

After several exploratory studies (e.g. [60, 61, 62]) new calculations are for Ny = 2+ 1 quarks
with physical masses using a stout-smeared staggered action, on lattices with N; = 6,8,10,12,
followed by a continuum extrapolation. The A — 0 extrapolation is done with a similar reweight-
ing technique applied to a singular value representation of the pion condensate, as for the chiral
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Figure 11: Left: Heavy mass corner of the Columbia plot, computed in an effective theory [68]. Right:
Schematic phase diagram for QCD with heavy quarks.

condensate mentioned in section 2.3 [18]. The order parameters used to characterise the phase
structure are the chiral and pion condensates,

Te= () Toy = o (W) — (PW)oo) +1 3.11)

- mifz s
which are shown as a function of 7" for a specific choice of y; in Fig. 10 (left). Varying both ther-
modynamic parameters, the phase boundaries have been mapped out leading to the phase diagram
in Fig. 10 (middle). For the transition in the u,-direction, the extrapolation A — 0 is consistent
with O(2) scaling of the pion condensate, identifying the transition to be second-order. Prospects

to reweight in Up using finite isospin as a point of departure are discussed in [64].

4. Larger baryon density via effective lattice theories

For the cold and dense regime, ug/T >> 1, where the sign problem is strongest, no genuine
methods are available. Nevertheless, some progress towards at least qualitative physics has been
made over the last few years by means of effective theories. The general idea is to split the problem
in two parts: first derive an effective theory by expansion methods in some small parameter. By
this step some degrees of freedom have already been integrated over, such that the sign problem for
the resulting effective theory is milder than the original one. In a second step the effective theory
is solved by flux representations simulated by a worm algorithm, complex Langevin simulations or
analytic series expansion methods.

Two types of effective degrees of freedom arise naturally, depending on the integration order,

7 = /DUD‘I_/D‘I/ e Socn[U, W] /DUO e SerrlUo] — /D‘I7D‘I/ e Serr[W. W] 4.1)

In the first case, fermions are integrated over as well as all spatial link variables, leaving a theory of
temporal links only, which on a periodic lattice can be expressed by Polyakov loops. In the second
case, all gauge links are integrated, leaving a fermionic effective theory in terms of mesons and
baryons, because of gauge invariance. Note that both representations are perfectly equivalent to
QCD. Because of the truncations involved in doing the integrations analytically, this equivalence is
reduced to specific parameter regions, where the approximations hold.
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Figure 12: Left: Onset of baryon number (crossover) for heavy quarks and different lattice spacings [72].
Right: First-order onset transition for light quarks [71].

4.1 Effective theory for heavy quarks

The representation of QCD in terms of Polyakov loops was developed to characterise the ther-
mal transition in pure gauge theories [65, 66] and has been extended to include fermions. Starting
point is Wilson’s lattice formulation. The effective theory is then derived by a combined expan-
sion in the fundamental character coefficient, which is a known function of the gauge coupling and
always smaller than one for finite 8, and the hopping parameter,

2 1 1 1
u(ﬁ):£+ﬁ—+...<1, 8<<K:2am+8><4' (4.2)

18 216
With the euclidean time extent now absorbed in the remaining temporal Wilson line variables W (x),

the result is an effectively 3d theory resembling a continuous spin model [67, 68],

zZ = /DW [T [1+A(LLy + LiLy)] 4.3)

<X,y>

< [T+ AL+ IR+ BPY L+ Ry L+ B L+ P
X

W, W, Wy A
< 1 <1—h2Tr LLA ) ) 1 —hpTr— 2% T 17y o R
Xy | 1+h1Wy 14+ Wy 1+h1Wy

The couplings of the effective theory, A (u, k,N¢),hy(u, &, 1, Ng), by (1) = h1 (=), ha(u, k, Ny ) are
(resummed) power series in the original small parameters, and can thus in turn be treated as small
expansion parameters for the effective theory. This is illustrated in [69], where the critical coupling
for the SU (3) pure gauge theory is extracted from the effective theory by means of series expansion
methods. Comparison with the full 4d Monte Carlo result shows agreement to better than 10%
for N; € [2,16], for which continuum extrapolations are possible, thus constituting a completely
analytic calculation of the deconfinement transition of lattice Yang-Mills theory.

When quarks are included, the heavy mass corner of the Columia plot has been simulated
by means of the effective theory. On coarse N; = 4 lattices, the critical line found in full QCD
simulations at gt = 0 is again accurately reproduced, and the calculation can be extended to finite
u simulating a flux representation [68]. In this way the deconfinement critical surface is known for
any value of u, Fig. 11 (left), and the phase diagram for heavy quarks looks like Fig. 11 (right).
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Figure 13: Left: Phase diagram for QCD with N, — o [73]. Middle: The onset transition becomes first
order for large N.. Right: p ~ N, for large N, in the baryon condensed region [75].

With the same methods, the cold and dense regime can also be studied and, in particular,
the onset transition to condensing baryon matter has been seen explicitly to various orders in the
expansions [70, 71, 72]. Fig. 12 (left) shows the baryon density, featuring the “silver blaze prop-
erty” of staying zero until up ~ mp, followed by a sudden rise to lattice saturation, which is the
maximal number of quarks per lattice site allowed by the Pauli principle. In continuum units, this
lattice artefact moves to infinity by continuum extrapolation, as the figure illustrates. Fig. 12 (left)
shows a crossover, whereas for light quarks simulations show a first-order transition Fig. 12 (right)
changing to crossover at an endpoint 7, (m). Indeed, the binding energy per baryon in the hopping
expansion is found to start as € ~ k2 [71], i.e. it decreases with growing quark mass to zero in the
static limit, as one also expects from Yukawa potentials in nuclear physics. Hence, the end point of
the nuclear liquid gas transition, 7, (m), decreases with mass.

4.2 Large N,

In yet another corner of QCD parameter space, interesting conjectures concerning the QCD
phase structure were based on large N, arguments [73]. In particular, the phase diagram in the
large N, limit was argued to look as in Fig. 13 (left). With fermion contributions suppressed, the
deconfinement transition is a straight line separating the plasma phase, where the pressure scales
as p ~ N2, from the hadron gas phase, where it scales as p ~ N°. In [73] it is argued that at finite
density there should then be a third phase with p ~ N., which was termed quarkyonic since it shows
aspects of both baryon and quark matter. In particular, the fermi sea at low temperatures is argued
to be composed of a baryonic shell of thickness ~ Agcp, and quark matter inside.

The effective theory of the previous section can be derived for a general number of colours [74].
For large N, the baryon mass is mp ~ N,, so the constituent quark mass should not matter and the
cold and dense region for large N, is accessible to direct calculation [75]. It was found that the
baryon onset transition steepens with N,, to become first-order in the large N, limit, Fig. 13 (mid-
dle). Furthermore, through three orders in the hopping expansion, the pressure scales as p ~ N,,
suggesting this to be a property to all orders. This scaling is reproduced with a leading correction
even for N, = 3 —9, right after the onset transition Fig. 13 (right). The large N, phase diagram
Fig. 13 (left) is thus continuously obtained from Fig. 11 (right) by increasing N.. Note also, that a
lattice filling with baryon number smoothly changes from baryon matter (at the onset of conden-
sation) to quark matter (at saturation) as a function of ug, which is consistent with the picture of
quarkyonic matter. For light quarks, there may be in addition a chiral transition.
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Figure 14: Left: Chiral phase transition and onset transition to baryon condensation for m = 0 [82].
Right: Mass dependence of the chiral and baryon onset transition in the strong coupling limit [83].

4.3 Effective theory for light quarks

In this case the starting point is the lattice action with staggered fermions. After a strong
coupling expansion in powers of 3, the gauge integration is done to leave a fermionic theory,

zZ- / DYDyYDU ¢ SVI=SiU-vv — / DYDY Zs(e %), (4.4)
Zy = /DU e SHUIVE (757 = 14 (S,[U))z, +O(B?) .

Early mean field [76] and Monte Carlo [77] studies based on a polymer representation have been
restricted to the strong coupling limit, B = 0. More recent simulations are done with a worm
algorithm [79]. Note that anisotropic lattices are necessary for f = 0 in order to tune temperature.

After integrating over the fermions also, one arrives at a dual formulation in terms of monomers,
dimers, world lines and world sheets, which for isotropic lattices reads [80, 81],

B \n,+i
(Ne—kp)!_rr V! ; o
Z(mg,p)= Y, i1 L7 Game) [ Twi ) [ Tas i [T 55—~
(koniny} b=(5.v) c-( b — ‘fb|) U I I p  NpNp:
meson hoppings chiral condensate baryon hoppings gluon propagation

Note that this formulation in general also contains negative weights, but the resulting sign problem
is mild enough to be handled by reweighting techniques. A particular advantage of this formula-
tion is the feasibility to simulate the chiral limit as well as finite mass, a drawback is that gauge
corrections are more difficult to include.

Fig. 14 (left) shows the phase diagram for the chiral limit, both for B = 0 and with leading
linear gauge corrections included [82]. As expected, there always is a non-analytic chiral phase
transition, with a tricritical point where the first-order transition at finite density meets the second-
order line. In the strong coupling limit, this tricritical point coincides with the end point of the
nuclear liquid gas transition. When gauge corrections are switched on, these start splitting up,
but surprisingly the first-order lines of the chiral and nuclear transitions are still indistinguishably
close. Fig. 14 (right) shows the strong coupling limit, but now with finite quark mass switched on.
The second-order transition line changes to crossover, as expected. Note the decreasing T,.(m) of
the end point, which is in qualitative agreement with the finding for heavy quarks. The end point
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quickly moves to up =37, which is again consistent with all previously reported results. First
simulations including both, gauge corrections as well as finite mass, are also available [84]. Note
also that, in the continuum, this effective theory represents Ny = 4 QCD if no rooting is applied.

5. Conclusions

Because direct simulations are impossible, determining the nature of the QCD transition in
the chiral limit as well as at finite baryon density remains extraordinarily difficult. Nevertheless,
systematic studies of QCD transitions in accessible regions of parameter space are beginning to
constrain the possible phase diagram. In particular, the strength of the chiral transition weakens
with decreasing Ny and with decreasing lattice spacing. For the chiral limit with Ny = 2 and
surprisingly also for Ny = 3, this implies either a second-order transition, or a first-order transition
disappearing at excessively small quark masses. The chiral transition also weakens, at least initially,
when a real baryon chemical potential is switched on. For physical quark masses, there is no
conclusive sign of criticality from the lattice for up <37. This is consistent with recent Dyson-
Schwinger [85] and functional renormalisation group [86] results, which predict a critical point in
the range up/T =~ 4 — 6, with however still uncertain systematics in that chemical potential range.

The cold and dense regime /T >> 1, progress is being made with analytically derived effec-
tive lattice theories, which represent QCD in complementary parameter regions with either heavy
quarks or at strong coupling. They unambiguously show the silver blaze behaviour at T = 0, fol-
lowed by a first-order transition to baryon condensation with a critical end point, which for physical
parameter values will represent the nuclear liquid gas transition. At finite isospin chemical poten-
tial and low temperatures, a second-order transition to a pion condensed phase is seen for physical
quark masses and in the continuum. These features are indicated in the phase diagram Fig. 15.

Other developments concern the physical degrees of freedom near the thermal transition. An
emergent chiral spin symmetry in the temperature range from the crossover to ~ 1 GeV suggests
light quarks still bound by colour-electric strings, and the symmetry gets amplified by baryon
chemical potential. At low temperatures, there is the onset transition to baryon matter, which
smoothly turns into a quarkyonic regime (defined by p ~ N,) that, at least in principle, allows a
continuous interpolation from baryon matter to quark matter. The band in the phase diagram Fig. 15
thus indicates a region, where the dynamics changes very gradually and the degrees of freedom still
resemble the hadronic ones. In conclusion, the lattice is beginning to see some structure in the QCD
phase diagram. Intriguingly, a non-analytic chiral phase transition is neither required nor ruled out
by lattice data at this stage, and remains an exciting subject of research.
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