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Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which
severely limits our understanding of the QCD phase diagram. In this review I collect results for
the phase structure in an extended parameter space of QCD, with varying numbers of flavours,
quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies
help in understanding the underlying symmetries and degrees of freedom, and are beginning to
provide a consistent picture constraining the possibilities for the physical phase diagram.
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The QCD phase diagram Owe Philipsen

The “Columbia plot”

Order of the QCD thermal transition as function of quark masses                  for(mud, ms)
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Figure 1: Possible scenarios for the order of the thermal QCD transition as a function of the quark masses.

1. Introduction

An outstanding open problem of QCD is the nature of its phase diagram as a function of
temperature and baryon chemical potential. A change in dynamics from a hadron gas to a regime
governed by different degrees of freedom, as in a quark gluon plasma, is expected to be caused
by an effective restoration of chiral symmetry in a region with temperatures T <∼160 MeV and
baryon chemical potential µB<∼1 GeV. Such low energy scales necessitate a non-perturbative first-
principles approach like lattice QCD. Unfortunately, a severe sign problem prohibits simulations
by importance sampling for non-vanishing chemical potential [1]. Despite tremendous efforts over
several decades, no genuine solution to this problem is available.

In this contribution I will not cover the sign problem and the many attempts to alleviate it
algorithmically. Instead I will report on a different strategy to learn about the phase diagram,
which is to consider QCD thermodynamics in the parameter space {T,µB,µI,N f ,m

f
q ,g2,Nc}. By

studying the phase structure in every parameter region, where some or another method works, an
increasing number of constraints on the physical QCD phase diagram is obtained. As a by-product,
such studies also provide theoretical insight about the interplay of the involved symmetries and
degrees of freedom. I will begin with a discussion of the nature of the chiral phase transition in the
chiral limit, before turning to proper finite density.

2. The Columbia plot and its extended versions

2.1 The order of the thermal transition at zero density

The nature of the thermal QCD transition with N f = 2+1 quark flavours as a function of the
quark masses is summarised in the so-called Columbia plot, Fig. 1. In the quenched limit QCD
reduces to SU(3) Yang-Mills theory in the presence of static quarks and shows a first-order phase
transition [2] associated with the spontaneous breaking of the Z(3) center symmetry. Once quarks
have a finite mass, the center symmetry is explicitly broken and the first-order phase transition
weakens as the quarks get lighter, until it is lost at a Z(2) second-order line of critical mass values.

In the opposite, chiral limit, the situation is more complicated, and for a long time expectations
have been mostly guided by an analysis based on the epsilon expansion [3]. It predicts the chiral
transition to be first-order for N f ≥ 3, whereas the case of N f = 2 is found to crucially depend on

1
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Figure 2: Left: Order of the thermal transition as function of N f and quark mass (schematic). Right:
Second-order chiral critical line from unimproved staggered fermions [13].

the fate of the anomalous U(1)A symmetry: if the latter remains broken at Tc, the chiral transi-
tion should be second order in the O(4)-universality class, whereas its effective restoration would
enlarge the chiral symmetry and push the transition to first-order. A later high order perturbative
analysis of renormalisation group flow [4] instead finds a possible symmetry breaking pattern to be
U(2)L⊗U(2)R→U(2)V in the case of a restored U(1)A, which would amount to a second-order
transition in a different universality class. For non-zero quark masses, chiral symmetry is explic-
itly broken and a first-order chiral transition weakens to disappear at a Z(2) second-order critical
boundary, while a second-order transition disappears immediately.

Computing these boundaries numerically is punishingly expensive. Locating a transition re-
quires scans in temperature and mass, deciding its order and universality requires finite size scaling
analyses with sufficiently large and different volumes. There is critical slowing down near a critical
point as well as approaching the continuum, and the required quark masses are mostly smaller than
physical. On coarse Nτ = 4 lattices, the first-order region is explicitly seen for N f = 3 unimproved
staggered [5, 6] as well as O(a)-improved Wilson [7] fermions, the narrower N f = 2 region with
unimproved staggered [8, 9] and unimproved Wilson [10] fermions. However, the location of the
boundary line varies widely between these, indicating large cut-off effects. On the other hand, sim-
ulations with an improved staggered action (HISQ) do not see a first-order region on Nτ = 6 lattices
even for N f = 3 [11]. The only point with a continuum extrapolation (besides the pure gauge limit)
is the physical point, which has been identified to be in the crossover region [12].

2.2 The chiral transition as a function of N f

In an alternative version of the Columbia plot, the chiral transition is considered as a function
of the number of degenerate quark flavours and their mass. The first scenario from Fig. 1 then
translates into Fig. 2 (left). The chiral symmetry and, with it, the strength of the transition increases
with the number of flavours. One may now consider a partition function with the quark determinant
raised to continuous, non-integer powers of N f , in order to study the approach to the chiral limit [9].
For sufficiently large N f , the chiral limit corresponds to a first-order, three-state coexistence line
(with 〈ψ̄ψ〉= 0,±const). The weakening of this transition with decreasing N f implies a tricritical
point, in which it ends. The chiral critical line, which separates the first-order from the crossover
region, enters the tricritical point with a known tricritical exponent. Of course, there is no physical

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
7
3

The QCD phase diagram Owe Philipsen

Continuum approach for             critical quark mass 
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FIG. 6. Continuum extrapolation of the critical point
√

t0mPS,E (upper-left), (
√

t0mPS,E)2 (upper-right),
√

t0TE (lower-left)
and mPS,E/TE (lower-right). Note that the continuum value of mPS,E/TE in the lower-right panel is obtained by using the ratio
of

√
t0mPS,E and

√
t0TE in the continuum limit obtained in the upper-left and the lower-left panel respectively.

We estimate the upper bound of the critical point and its temperature as

mPS,E ! 170MeV, (15)

TE = 134(3)MeV, (16)

mPS,E/TE ! 1.3. (17)

Note that the continuum extrapolation significantly dominates the systematic error thus we compromise to quote the
upper bound of mPS,E. Since we are using the value of csw at very low β which is out of the interpolation range [19],
it may be possible that the O(a) improvement program is not properly working in our parameter region. In oder
to control the lattice cutoff effect, one can straightforwardly extend the temporal lattice size Nt but its cost is very
demanding. Another possibility may be to re-do the same calculation with a different lattice action, say a different
gauge action but the same/similar Wilson-type fermions. And then one can perform a combined fit with an additional
estimate of the critical point.

Our estimate of the upper bound of mPS,E is larger than that obtained by the staggered type fermions [13],
mPS,E ! 50 MeV. Note that, however, our upper bound is derived from the existence of the critical point as an edge
of the 1st oder phase transition while the estimate of the smeared staggered study was based on its absence. For
mPS,E/TE, our bound is consistent with the result of the standard staggered fermions [10, 26], mPS,E/TE = 0.37.

Although our results of Wilson-type fermions is consistent with that of staggered-type fermions, it is premature
to conclude that the universality is confirmed. In future as errors reduce a discrepancy may appear. As seen above,
the Wilson-type fermion is suffering from the large cut off effects, on the other hand, the staggered fermions with the

Results, so far...
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[Jin et al., PRD 17] 

O(a) improved Wilson, N⌧ = 4, 6, 8, 10
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[Cuteri, O.P., Sciarra, PRD 18] 

Unimproved staggered

Is possibly also the three flavour chiral transition of second-order ?!?           see also                 [de Forcrand, D’Elia, PoS LAT 16]

Nf = 3
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0.00

0.02

0.04

0.06

0.08

0.10

1/1
60 1/8

0
1/6

0
1/4

0
1/2

7
1/2

0

55 80 90 110 140 160

solid : Nτ=6

open : Nτ=8

half-filled : Nτ=12

M/χM

@χmax
M

1/1
60 1/8

0
1/6

0
1/4

0
1/2

7
1/2

0
0.00

0.05

0.10

0.15

0.20

0.25

0.30
55 80 90 110 140 160

colored : O(N)
black solid : Z(2)@Hc=1/120

black dashed : Z(2)@Hc=1/240

M/χM

ml/ms

mπ [MeV]

@0.6⋅χmax
M

Figure 6: M/cM is plotted for different Nt along with the scaling expectations from different universality
classes.

MeV and 135(3) MeV, respectively. Including all systematic uncertainties, our current estimate of
T 0

c in the continuum limit is T 0
c = 132+3

�6 MeV [12]. By looking at the ratio M/cM as a function of
light quark mass, the chiral phase transition is more like a second order phase transition instead of
a first order phase transition.
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6

Figure 3: Left: Chiral critical point for N f = 3 O(a) improved Wilson fermions [15]. Right: Magnetic
equation of state approaching the chiral limit. Lines represent fits to O(N)- (second-order scenario) or Z(2)-
scaling with a finite critical quark mass (first-order scenario) [16].

meaning in this non-integer value of Ntric
f other than to be smaller or larger than two, which puts

the chiral transition for N f = 2 in the first- or second-order region, respectively.
A study on Nτ = 4 with unimproved staggered fermions [9] fully confirms these considera-

tions, cf. Fig. 2 (right). For sufficiently small masses tricritical scaling is observed and can be
used to extrapolate to the chiral limit. Unfortunately, the scaling region is small and little is gained
over direct simulations at N f = 2. On Nτ = 6 lattices the scaling region is too low in quark mass
to be simulated straightforwardly. However, beyond the scaling region the chiral critical line is
observed to be linear over a large range of N f -values. A linear extrapolation will then produce
an upper bound for Ntric

f . In order to draw conclusions, one would need to know the size of the
scaling region, where the chiral critical line is curved. In any case, a strong trend is seen for all
N f : decreasing the lattice spacing dramatically shrinks the chiral critical quark mass bounding a
first-order chiral transition. Similar observations up to Nτ = 10 are made for N f = 4 [14] and also
for N f = 3 with O(a)-improved Wilson quarks [15] Fig. 3 (left).

While these calculations do not yet permit unambiguous continuum extrapolations, they pro-
vide a consistent picture across all discretisations: the chiral transition probed by lattice simulations
weakens considerably as the continuum is approached. This makes a second-order scenario for the
N f = 2 chiral limit more likely and raises the interesting question, whether also N f = 3,4 might
possibly have second-order transitions, contrary to what was expected for a long time.

2.3 From the physical point towards the chiral limit

There is then no contradiction between unimproved and improved staggered actions, which
do not see a first-order region so far. Recent investigations searching for the chiral phase transition
with improved actions start at the N f = 2+1 physical point and then reduce the light quark masses.
Thus either a Z(2)-critical point bounding the first-order region is approached, or a second-order
transition in the chiral limit.

In [16, 17] the scaling behaviour was checked as the chiral limit is approached. Simulations
were carried out using the HISQ action on lattices with Nτ = 6,8,10 and light quark masses down
to mπ ≈ 55 MeV. The analysis uses a renormalisation group invariant combination of chiral con-
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densates as order parameter representing the magnetisation, and the light quark masses in units of
the strange quark mass as symmetry breaking field,

M = 2(ms〈ψ̄ψ〉l−ml〈ψ̄ψ〉s)/ f 4
K , H = ml/ms . (2.1)

Near a critical point the magnetic equation of state is then dominated by universal scaling functions

M(t,h) = h1/δ fG(z)+ . . . , χM(t,h) =
∂M
∂H

= h−1
0 h1/δ−1 fχ(z)+ . . . , (2.2)

with a scaling variable z = t/h1/βδ expressed in terms of the reduced temperature and external
field, t = t0(T −T 0

c )/T 0
c ,h = H/h0, which contain the unknown critical temperature in the chiral

limit, T 0
c , and two non-universal parameters t0,h0.

Fig. 3 (left) shows the ratio M/χM, whose approach to a critical point is sensitive to the scaling
functions pertaining to the appropriate universality class. While it is difficult to distinguish between
O(4) and Z(2), it is apparent that any finite critical quark mass bounding a first-order region has
to be excessively small to be consistent with the observed behaviour. There is a similar scaling
expression for the approach of the pseudo-critical crossover temperature of some observable X to
the critical temperature in the chiral limit,

TX(H) = T 0
c +

zX

z0
T 0

c H1/βδ , T 0
c = 132+3

−6MeV . (2.3)

In [17] the variation with the possible critical exponents is observed to be very small, so that
an extrapolation makes sense even without definite knowledge of the eventual universality class.
Results were checked to be stable when the continuum extrapolation is done before the chiral
extrapolation, leading to the critical temperature as a first result for the chiral limit. Note that its
value is ∼ 25 MeV lower than the pseudo-critical temperature at the physical point, which should
be important for phenomenological descriptions of chiral symmetry breaking.

Similar conclusions are drawn in an exploratory study attempting to approach the chiral limit
more economically by reweighting in the light quark mass [18], with a weight factor

W =
det(D)

det(D+mud)
= exp

[
− V

T
mudψ̄ψ(mud)+O(m4

ud)
]
. (2.4)

The Banks-Casher relation is used to relate the chiral condensate to the spectral density of the Dirac
operator, which is then reweighted to zero mass. Note, that this involves an infinite volume extrap-
olation by polynomial fits, whose systematics still needs studying. Nevertheless, the finite size
scaling of the chiral condensate obtained in this approach clearly prefers a second-order scenario.

2.4 The U(1)A anomaly

As pointed out in section 2.1, the fate of the anomalous U(1)A around the thermal transition is
expected to play a significant role in determining the order of the chiral phase transition. Simula-
tions of a model realising the QCD chiral symmetry with a tuneable strength of the U(1)A anomaly
indeed demonstrate that a first-order transition occurs for restored symmetry, which changes to
an O(4)-transition above some critical strength of symmetry breaking [19]. Unfortunately, this
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The             anomalyU(1)A
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Difficult, unsettled problem [compilation Y.  Aoki XQCD 2018]:

Why bother ?

• Because it is unsettled problem !  
• fate of U(1)A lattice  

• HotQCD (DW, 2012)                                           broken 
• JLQCD (topology fixed overlap, 2013)                restores 
• TWQCD (optimal DW, 2013)                               restores ? 
• LLNL/RBC (DW, 2014)                                       broken 
• HotQCD (DW, 2014)                                           broken 
• Dick et al.  (overlap on HISQ, 2015)                    broken 
• Brandt et al. (O(a) improved Wilson 2016)           restores 
• JLQCD (reweighted overlap from DW, 2016)       restores 
• JLQCD (current:  see Suzuki et al Lattice 2017)  restores 
• Ishikawa et al (Wilson, 2017)                       at least Z4 restores

parallel Suzuki

Axial U(1) symmetry and Dirac spectra in high-temperature phase of Nf = 2 lattice QCD Kei Suzuki

1. Introduction

The axial U(1)A symmetry plays an unique role in quantum chromodynamics (QCD). In the
low-temperature phase, it is violated by the chiral anomaly and is closely related to topological
excitations of background gluon fields, such as the instantons. As an order parameter of the U(1)A

symmetry breaking, the U(1)A susceptibility, ∆π−δ , may be defined by a difference between the
correlators of isovector-pseudoscalar (πa ≡ iψ̄τaγ5ψ) and isovector-scalar (δ a ≡ ψ̄τaψ) operators:

∆π−δ ≡ χπ − χδ ≡
∫

d4x⟨πa(x)πa(0)− δ a(x)δ a(0)⟩, (1.1)

where a is an isospin index. In this work we consider two flavor (Nf = 2) QCD.
In the high temperature phase, the (spontaneously broken) chiral symmetry is restored, while

the restoration (or violation) of the U(1)A symmetry remains a long standing problem. The JLQCD
Collaboration observed a restoration of the U(1)A symmetry above the critical temperature Tc in
Nf = 2 lattice QCD [1, 2]. Because the U(1)A susceptibility is sensitive to any tiny violation of
chiral symmetry on the lattice, the lattice fermion formalism maintaining the chiral symmetry, such
as the overlap (OV) or domain-wall (DW) fermions, was applied. In Ref. [1], the U(1)A symmetry
was investigated using the Dirac spectrum on gauge configurations generated with the dynamical
OV fermions in a fixed topological sector, Q = 0. In Ref. [2], the gauge configurations are generated
with dynamical Möbius domain-wall (MDW) fermions [3, 4]. Since the Ginsparg-Wilson (GW)
relation [5] for the MDW fermion is slightly violated especially for larger lattice spacings [6], we
applied the DW/OV reweighting technique [2]. In this case, observables measured on the gauge
ensembles with dynamical MDW fermions is reweighted to that on OV fermion ensembles, for
which the GW relation is precisely satisfied.

In these proceedings, we report the recent results of the U(1)A symmetry above Tc in Nf = 2
lattice QCD simulations with finer lattice spacing than Refs. [1, 2]. In particular, we will newly
define the U(1)A susceptibility subtracted the ultraviolet divergence and compare the results with
and without the ultraviolet contribution. Note that a part of our results has already been reported in
Refs. [7, 8].

2. Simulation setup

2.1 U(1)A susceptibility on the lattice

In the continuum theory, the U(1)A susceptibility (1.1) for fermion operators with a mass m
can be rewritten as

∆π−δ =
∫ ∞

0
dλ ρ(λ )

2m2

(λ 2 + m2)2 , (2.1)

where the Dirac eigenvalue spectral density is defined by ρ(λ ) = (1/V )⟨∑λ ′ δ (λ − λ ′)⟩ with the
Dirac eigenvalues λ and the four-dimensional volume V = L3 × Lt . On the lattice, the U(1)A

susceptibility for OV fermion operators may be given by [6]

∆ov
π−δ =

1
V (1− m2)2

〈
∑

i

2m2(1− λ (ov,m)2
i )2

λ (ov,m)4
i

〉
, (2.2)

1

[Gomez Nicola et al., PoS Confinement 2018]:

Ward Id. + U(3) chiral p.t., T-scaling of screening masses,  
criteria for exact restoration
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Figure 3: Quark mass dependence of U(1)A susceptibilities, D̄ov
p�d , from the eigenvalue density of the

overlap-Dirac operators at T = 220MeV. Left: UV-included (open) or UV-subtracted (filled) results on
the Möbius domain-wall (squares) or reweighted overlap (circles) ensembles at L = 32. Right: Volume
dependence (L = 24,32,40,48).

are caused by the discrepancy between the valence (OV) quark and sea (MDW) quarks. In other
words, these zero modes are artifacts induced by the partially quenched approximation. After the
DW/OV reweighting (magenta bins), we can completely remove such fictitious zero modes.

As shown in the lower panel of Fig. 2, at a large quark mass m = 26.4MeV, not only the chiral
zero modes but also low nonzero modes are enhanced more frequently. Then we cannot clearly
separate the zero modes from other modes. The increase of the low but nonzero modes leads to
a large value of D̄ov

p�d , as shown in Subsection 3.2. Here, the zero modes observed on the DW
ensemble survive even after the DW/OV reweighting, which indicates that these zero modes are
not artifacts but really physical ones. The appearance of these physical zero modes is related to the
nonzero values of the topological charge and susceptibility, as discussed in Subsection 3.3.

3.2 U(1)A susceptibility

In Fig. 3, we show the quark mass dependence of the U(1)A susceptibility D̄ov
p�d at T =

220MeV. The left panel shows the results at the spatial volume L3 = 323. Here, the magenta
circles (blue squares) represent the result on the OV (DW) ensembles. D̄ov

p�d on the DW suffers
from fictitious modes by the violation of the GW relation, so that we expect that the results overes-
timate the true value. On the other hand, D̄ov

p�d on the OV is expected to be closer to the continuum
limit. Also, the open (filled) symbols denote the results before (after) the UV subtraction by the
procedure of Eq. (2.6). While the results with ultraviolet contributions overestimate D̄ov

p�d , the
UV-subtracted results should be more reliable. Therefore, in the following we focus on the filled
magenta circles.

In the small quark mass region (m . 10MeV), D̄ov
p�d nearly vanishes, which strongly suggests

that the U(1)A symmetry is restored in the chiral limit. Furthermore, near m ⇠ 10MeV, we find a
sudden increase of D̄ov

p�d . This behavior may imply the existence of a “critical mass” as discussed
in Ref. [11]. In the large quark mass region, D̄ov

p�d shows a large value, which indicates that the
U(1)A symmetry is clearly broken.

6

Figure 4: Splitting between scalar and pseudo-scalar susceptibilities. Left: Overlap operator evaluated on
HISQ ensembles at the physical point [23]. Right: DW fermions reweighted to overlap [24].

"critical strength” of symmetry breaking is nothing universal that could be easily mapped to QCD,
which thus has to be investigated directly.

Several attempts over the last years used using different discretisation schemes, from which
apparently contradicting conclusions were drawn. Studies with chiral domain wall fermions on
Nτ = 8 with 200 MeV pions [20] find evidence of a broken U(1)A at the pseudo-critical tem-
perature, and the same result is reported when evaluating the overlap operator on Nτ = 8 HISQ
ensembles with 160 MeV pions [21]. On the other hand, the screening mass spectrum evaluated
at the pseudo-critical temperature with O(a)-improved Wilson fermions on fine Nτ = 16 lattices
suggests a significant reduction of the anomaly in the chiral limit [22], and Möbius domain wall
fermions reweighted to overlap on Nτ = 8,10 show full symmetry restoration at T ∼ 220 MeV. Up-
dates on these results, using the difference of scalar and pseudo-scalar susceptibilities as a measure
for the anomaly,

∆π−δ = χπ −χδ =
∫

d4x 〈πa(x)πa(0)−δ a(x)−δ a(0)〉 , (2.5)

are shown in Fig. 4. On the left the overlap Dirac operator is evaluated on HISQ ensembles with
physical quark masses, including an extrapolation to the continuum limit [23]. The full restoration
of the symmetry happens above the chiral crossover temperature, but this is not yet the chiral
limit. Fig. 4 (right) shows the same quantity as a function quark mass, with domain wall fermions
reweighted to overlap on Nτ = 12 at T = 220 MeV [24]. The splitting is observed to vanish in the
chiral limit, but in this case the temperature is above the transition. The qualitative features of both
calculations are fully consistent and no contradiction is apparent yet. It would be most valuable to
compare both approaches for a set of identical parameter values. For future investigations it might
also be useful to check further relations between chiral and U(1)A restoration, provided by certain
Ward identities, which give information on the scaling with temperature as a criterion for exact
symmetry restoration [25].

2.5 QCD with imaginary chemical potential

While it is unphysical, imaginary chemical potential for quark number, µ = iµi,µi ∈ R, does
not induce a sign problem and thus can be simulated without difficulty. This has been used to extract
several aspects of the low density phase diagram at real µ by analytic continuation [26, 27]. Two
exact symmetries facilitate such studies. Because of CP-invariance, the QCD partition function is

5
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End or meeting points

First order lines

The thermal phase transition at imaginary µ
<latexit sha1_base64="O5qqLo1EtjGqVEEXOKRl0ES/yYw=">AAAB6nicdVBNSwMxEM3Wr1q/qh69BIvgacluq21vRS8eK9paaJeSTbNtaJJdkqxQSn+CFw+KePUXefPfmG0rqOiDgcd7M8zMCxPOtEHow8mtrK6tb+Q3C1vbO7t7xf2Dto5TRWiLxDxWnRBrypmkLcMMp51EUSxCTu/C8WXm391TpVksb80koYHAQ8kiRrCx0k1PpP1iCblVv17xfIhcVEVntVpGynXfO4eei+YogSWa/eJ7bxCTVFBpCMdadz2UmGCKlWGE01mhl2qaYDLGQ9q1VGJBdTCdnzqDJ1YZwChWtqSBc/X7xBQLrScitJ0Cm5H+7WXiX143NVEtmDKZpIZKslgUpRyaGGZ/wwFTlBg+sQQTxeytkIywwsTYdAo2hK9P4f+k7bte2fWvK6XGxTKOPDgCx+AUeKAKGuAKNEELEDAED+AJPDvceXRenNdFa85ZzhyCH3DePgHJ2Y4k</latexit>

Chiral critical surface goes smoothly from imag. to real      
[de Forcrand, O.P. JHEP 07]

Chiral+deconfinement transition weaken with real, strengthen with imag.  
 
Phys. point “deeper” in crossover region than for zero density 
 
 
 
 
 
 
 
 
 
 
 

First-order region in RW plane shrinks towards continuum  
 

µ
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[Wu, Meng PRD 17, Czaban et al., PRD 16,  O.P., Sciarra 19]
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11Figure 5: Left: The QCD phase diagram at imaginary chemical potential. Vertical lines mark first-order
transitions between different center sectors, the dotted lines are the analytic continuation of the transitions
at real µ , whose nature depends on the quark masses. Right: Columbia plot with chemical potential. The
bottom plane corresponds to the first center-transition.

even in chemical potential Z(µ) = Z(−µ). Furthermore, for arbitrary fermion masses it is periodic
in imaginary chemical potential because of the global Roberge-Weiss (or center) symmetry [28],

Z
(

T, i
µi

T

)
= Z

(
T, i

µi

T
+ i

2πn
Nc

)
. (2.6)

This leads to transitions cycling through the Nc center sectors, which are distinguishable by the
phase of the Polyakov loop but have equal thermodynamic functions. The transitions are first order
for high temperatures and crossover for low temperatures, see Fig. 5 (left). In the T -direction there
is the analytic continuation of the QCD thermal transition, whose order depends on N f and the
quark masses. For first-order chiral and deconfinement transitions (small and large quark masses),
the transition lines meet up in a triple-point, while for thermal crossover the RW-transition ends
in a critical endpoint with 3d Ising universality. The boundary between these scenarios is marked
by a tricritical point. These structures have been established explicitly for unimproved staggered
[29, 30] as well as unimproved Wilson [31] fermions.

This translates into a 3d extension of the Columbia plot, as in Fig. 5 (right). Regions of
chiral and deconfinement phase transitions are now separated by critical surfaces from the crossover
region. The curvature of the chiral critical surface has been shown to be negative both on the N f = 3
diagonal, as well as near the physical point [32] on Nτ = 4 lattices. Thus the chiral transition
strengthens with imaginary and weakens with real chemical potential. This is opposite to a scenario
with a chiral critical point close to the temperature axis, which would require the chiral transition
at the physical point to stregthen with real µ . Unfortunately, because of the receding first-order
region, these calculations could not yet be repeated on finer lattices.

Investigations on finer lattices reveal the same trend as seen at µ = 0, namely the chiral tri-
critical line moving towards smaller quark masses, both for unimproved staggered [33] and Wilson
[34] quarks, Fig. 6 (left). For stout-smeared staggered [35] and HISQ [36] actions on Nτ = 4, even
the larger first-order region in the RW-plane cannot be detected when starting from the physical
point and reducing the pion masses down to mπ ≈ 50 MeV, as Fig. 6 (right) demonstrates with
second-order scaling.
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Figure 8. Overview of chiral tricritical values of the pion mass in the Roberge-Weiss plane.

lattice spacing, appear to have considerably larger cut-off
effects. For example, comparing amtric

⇡, heavy

“ 2.2302p2q
from Ref. 24 with our amtric

⇡, heavy

“ 1.7260p3q, the pion-
resolution problem is milder in the present study. It is
also interesting to compare the position of the tricritical
points in physical units,

mtric, Wilson

⇡, light

“ 669`95
´81 MeV

mtric, Staggered

⇡, light

“ 328`44
´81 MeV

(23)

and

mtric,Wilson

⇡, heavy

“ 3659`589
´619 MeV

mtric, Staggered

⇡, heavy

“ 2813`235
´261 MeV

. (24)

The large differences between discretizations again imply
being far from the continuum limit, where results from
all discretizations have to merge. The observed trend
is consistent with the findings of simulations with im-
proved staggered actions, where the tricritical points can
only be bounded to be at much smaller masses, as indi-
cated in Figure 8, as well as with the analogous findings
at zero chemical potential (see discussion in the introduc-
tion). In particular the comparison across discretizations
implies enormous cut-off effects in the critical masses,
which could end up being over „100% of an eventual
continuum limit. We remark that cut-off effects in the
critical temperatures are much milder. At present, there
is no theoretical explanation as to why the discretization
effects on critical quark masses in the Columbia plot are
so strong.

In conclusion, we have determined the shift of the tri-
critical points in the Roberge-Weiss plane of unimproved
staggered fermions by changing from N⌧ “ 4 to N⌧ “ 6
lattices. The aspect ratios and statistics required to ex-
tract the correct order of the phase transition are found

to be larger in the Roberge-Weiss plane than at µ “ 0.
We find the cut-off effect on the tricritical masses to be
smaller but qualitatively the same as that observed with
Wilson fermions, and consistent with results for both dis-
cretizations at zero chemical potential. This implies in
particular, that the entire chiral critical surface depicted
in Figure 1 is shifted significantly towards smaller (and
possibly zero) light quark masses, as the lattice spac-
ing decreases, which is also consistent with results from
improved staggered actions. Unfortunately, our study
also implies that much finer lattices at inevitably smaller
quark masses are necessary, before one can hope the re-
sults of the light tricritical mass to stabilize in a contin-
uum limit.
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ν γ γ/ν 1/ν
3D Ising 0.6301(4) 1.2372(5) ∼ 1.963 ∼ 1.587
Tricritical 1/2 1 2 2
1st Order 1/3 1 3 3

TABLE III: Critical exponents relevant to our finite size scal-
ing analysis (see, e.g., Refs. [81–83]).

should lie on a universal scaling curve when plotted as a

function of (β − βRW )L
1/ν
s .

The critical exponents which are relevant to our anal-
ysis are reported in Table III. Apart from first order and
3D-Ising exponents, we also report tricritical indexes:
they are expected to describe the critical behavior ex-
actly at the separation point between the first order and
the second order region, however, before the thermody-
namic limit is really approached, they could describe the
critical behavior in a finite neighborhood of the tricritical
point [84].

A plot of χL/L
γ/ν
s vs. (β − βRW )L

1/ν
s for the three

different masses is reported in Figs. 3, 4 and 5, respec-
tively for first order, 3D-Ising and tricritical indexes. It
clearly appears that a first order transition is excluded for
all masses, while a reasonable scaling is obtained when
considering both the 3D-Ising and the tricritical critical
behavior.

As a further confirmation of the absence of a first order
transition for all explored masses, in Fig. 6 we report, just
for the lowest quark mass, aml = 0.00075, the probability
distribution of the plaquette and of the unrenormalized
quark condensate at the critical point for the different
lattice sizes. A vague double peak structure is visible only
in the distribution of the chiral condensate and for small
Ls, however it tends to disappear as the thermodynamic
limit is approached.

Therefore, our results suggest that a chiral first order
region, if any, is limited to a region of pion masses be-
low 50 MeV. There are of course many systematics that
should be considered before drawing a definite conclu-
sions. First of all, as we have already discussed, our
approach to the chiral limit actually means that just one
pion becomes massless, while all other pion masses stay
above 400 MeV. Therefore one should repeat this study
with significantly larger values of Nt (smaller lattice spac-
ings), so that also the other pions become lighter. In prin-
ciple, additional chiral degrees of freedom could change
the scenario and make the first order region larger, even
if this is at odds with the common experience of shrink-
ing of first order regions as the continuum limit is ap-
proached. Unfortunately, going to significantly larger
values of Nt is not feasible with our present computa-
tional resources, so this is left for future work.

A second remark regards the lattice sizes that we have
adopted in our study, in particular the maximum values
of aLsmπ that we have reached are 2, 3, and 4 respec-
tively for aml = 0.00075, aml = 0.0015 and aml = 0.003.
The values are not particularly large, especially for the
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FIG. 4: Finite size scaling for the susceptibility of the
Polyakov loop according to 3D-Ising critical indexes. From
top to bottom: aml = 0.003, aml = 0.0015 and aml =
0.00075.

lowest explored quark mass. However, we have seen no
significant deviation from a second order scaling, and no
signal for the development of a double peak structure
as the volume is increased; on the contrary, some weak
double peak signals visible in the chiral condensate distri-
bution for small Ls have shown a tendency to disappear
when going to larger volumes.

N⌧ = 4
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Figure 6: Left: Tricritical pion mass values delimiting the first-order chiral region in the RW-plane [33].
Right: Finite size scaling with 3d Z(2) exponents for stout-smeared staggered fermions with mπ ≈ 50 MeV
and (mud/ms)phys on Nτ = 4 in the RW-plane [35].

Together with the µ = 0 results, this means that the entire chiral critical surface is shifting
drastically towards the chiral limit as the lattice spacing is decreased, and it is an open question
whether any first-order transition remains in the continuum limit. At the same time, this implies a
softening of the crossover at the physical point, with so far no indication of a chiral critical structure
at real chemical potential.

3. QCD at the physical point

3.1 Emerging chiral spin symmetry

Besides the location and nature of phase transitions, studies of phase diagrams are also con-
cerned with an identification of the dominant dynamical degrees of freedom in each regime, which
are expected to reflect the underlying symmetries. In QCD, in particular, the hadronic regime is
usually associated with broken chiral symmetry, while the quark gluon plasma represents a symme-
try restored state. In this context new investigations point to an interesting intermediate temperature
regime with an emerging SU(4) symmetry, which was first proposed in [37].

Consider a SU(2)CS chiral spin transformation of quark fields defined by

ψ(x)→ exp
(

i~Σ ·~ε
)
, Σk = {γk,−iγ5γk,γ5} . (3.1)

The QCD Lagrangian is not invariant under such transformations. However, when there is a ther-
modynamic medium implying a preferred Lorentz frame, one finds the colour-electric part of the
quark-gluon interaction as well as a chemical potential term for fermion number to be invariant,
while kinetic terms and colour-magnetic interactions are not. Combining chiral spin symmetry
with isospin, SU(2)CS× SU(2), it can be embedded in a SU(4) symmtery that fully contains the
usual chiral symmetry of the Lagrangian, SU(4)⊃ SU(2)L×SU(2)R×U(1)A.

The realisation of these symmetries has recently been tested with spatial [38] and temporal
[39] correlation functions. Fig. 7 shows some examples of spatial correlators,

CΓ(nz) = ∑
nx,ny,nτ

〈OΓ(nx,ny,nz,nτ)OΓ(0,0)〉 , (3.2)

with quantum numbers specified by Γ, evaluated on JLQCD configurations with N f = 2 domain
wall fermions with physical light quark masses from Nτ = 4,6,8,12 lattices. At T = 220 MeV,
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For               , a larger than chiral symmetry has been postulated            [Glozman, EPJA 15]

12

0.0 0.5 1.0 1.5 2.0
zT

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 

C
(n

z=
1

)

PS
S
Vx
Ax
Tt
Xt

220 MeV
32x8

0.0 0.5 1.0 1.5 2.0
zT

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 

C
(n

z=
1

)

380 MeV
32x8

full QCD PS, S

free PS, S

full QCD Tt, Xt

free Vx, Ax

free Tt, Xt

full QCD Vx, Ax

0.0 1.0 2.0 3.0 4.0
zT

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
(n

z) 
/ 

C
(n

z=
1

)

960 MeV
32x4

FIG. 2. Correlation functions of the bilinears in the E1 and E2 multiplets. The structure of the plots is the same as described
in the caption of Fig. 1, with the addition of the correlators for free quarks shown as dashed lines.

splitting between the E1 and E2 multiplets indicating manifest SU(2)CS and SU(4) symmetries. In addition all
correlators are well separated from their free quark counterparts shown as dashed curves.

At the largest temperature we study, T = 960 MeV, the situation has changed considerably: All correlators almost
perfectly coincide with the corresponding free correlators (dashed lines on top of the data points for the full QCD
correlators). Thus at T = 960 MeV we have reached the region where only chiral U(1)A and SU(2)L ⇥ SU(2)R

symmetries exist and the coincidence with the free correlators suggests a gas of quasi-free quarks.
In an attempt of discussing the observed evolution of symmetries more quantitatively, in Figures 3 and 4 we now

study ratios of correlators, where the fully symmetric case corresponds to a constant ratio 1 for all z. In Fig. 3
we show ratios of normalized correlators for di↵erent bilinears from the E2 multiplet. Also the ratios are plotted as
function of the dimensionless quantity zT = nz/Nt and we compare di↵erent temperatures. In the lhs. plot we show
the ratio CXt

/CTt
. The two correlators are related by U(1)A and a deviation from a constant ratio 1 indicates a

violation of U(1)A. In the rhs. plot we show the ratio CAx
/CTt

. These two correlators are related by SU(2)CS and
thus here a deviation from 1 indicates a violation of SU(2)CS .

Except for the lowest two temperatures the U(1)A symmetry is (almost) exact, as can be seen from the left panel
of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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of Fig. 3 (a similar plot can be shown for the restoration of the SU(2)L ⇥ SU(2)R symmetry). For the case of the
SU(2)CS symmetry (rhs. plot) the lowest two temperatures display sizable residual violations, but for T = 380 MeV
the deviation from SU(2)CS has reduced to a 5% e↵ect.
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Name Dirac structure Abbreviation

Pseudoscalar �5 PS ⇤
U(1)AScalar 1 S

Axial-vector �k�5 A ⇤
SU(2)AVector �k V

Tensor-vector �k�3 T ⇤
U(1)AAxial-tensor-vector �k�3�5 X

TABLE II. Fermion bilinears considered in this work and their transformation properties (last column). This classification
assumes propagation in z-direction. The open vector index k here runs over the components 1, 2, 4, i.e., x, y and t.

At zero (or su�ciently small) temperature the chiral partner of the non-propagating third vector current component,
i.e., the bilinear with the gamma structure � = �3�5, does indeed propagate also in z-direction due to broken chiral
symmetry and then couples to the pseudoscalar channel. After restoration of chiral symmetry, i.e., at the temperatures
we consider here, it behaves like its chiral partner and does not propagate in z-direction. Thus, like � = �3, also the
choice � = �3�5 can be omitted.

The bilinears that correspond to the six tensor elements �µ⌫ of the Cli↵ord algebra can be organized into two
vector-valued objects, the Tensor-vector T:

� =

8
<
:
�1�3 . . . Tx ,
�2�3 . . . Ty , (Tensor-vector)
�4�3 . . . Tt ,

(23)

and the Axial-tensor-vector X:

� =

8
<
:
�1�3�5 . . . Xx ,
�2�3�5 . . . Xy , (Axial-tensor-vector)
�4�3�5 . . . Xt .

(24)

The bilinears T and X can be transformed into each other by the U(1)A rotations (19). Table II summarizes our
bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.

Due to the restoration of the U(1)A and SU(2)L⇥SU(2)R symmetries at high temperature we expect the emergence
of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
SU(4) that contain U(1)A and SU(2)L ⇥ SU(2)R [18, 19],

SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by

q(x) ! exp

✓
i

2
~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp

✓
� i

2
~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d3x  †(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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bilinears and lists the U(1)A and SU(2)L ⇥ SU(2)R relations among them.
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of degeneracies among correlators of bilinears related by these symmetries, and of course those degeneracies clearly
must also be seen explicitly in the free continuum correlators (15), (16). The degeneracies based on U(1)A and
SU(2)L ⇥ SU(2)R are the degeneracies required by chiral symmetries that emerge above Tc.

However, in addition to those, at temperatures not too far above Tc a larger group of symmetries, SU(2)CS and
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SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by
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~⌃~✏

◆
q(x) , q̄(x) ! q̄(x)�4 exp
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� i
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~⌃~✏

◆
�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d3x  †(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.

Chiral spin trafo: 
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SU(2)CS � U(1)A and SU(4) � SU(2)L ⇥ SU(2)R ⇥ U(1)A , (25)

has been observed in our previous study of correlators [15]. The SU(2)CS chiral spin transformations are defined by
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�4 , (26)

where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d3x  †(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
fermion charge is also SU(2)CS invariant.
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where ~✏ 2 R3 are the rotation parameters. For the generators ~⌃ one has four di↵erent choices ~⌃ = ~⌃k with k = 1, 2, 3, 4,
but, as we will discuss below, only the cases k = 1 and k = 2 are of interest here. The generators are given by

~⌃k = {�k,�i�5�k, �5} , (27)

and the su(2) algebra is satisfied for any choice k = 1, 2, 3, 4. While these are not symmetries of the Dirac lagrangian,
both in Minkowski and Euclidean space, the Lorentz-invariant fermion charge in Minkowski space

Q =

Z
d3x  †(x) (x), (28)

is invariant under SU(2)CS , where  (x) can be either a single-flavor quark field or an isospin doublet. The Euclidean
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Combination with isospin                               can be embedded in
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and t components of the bilinears (22), (23) and (24). At finite temperature this rotational symmetry is broken down
to a residual SO(2) symmetry which connects the correlators of the spatial components Vx $ Vy and Ax $ Ay et
cetera. On the lattice the reduced symmetry for the T > 0 case and the z = const subspace is D4h and the relevant
symmetry is S2 ⇥ SU(2)CS [15]3, such that the multiplets are

(Vx, Vy); (Ax, Ay, Tt, Xt) , (36)

(Vt); (At, Tx, Ty, Xx, Xy) . (37)

Finally we remark that the group SU(2)CS⌦SU(2)F , where SU(2)F is the isospin symmetry group, can be extended
to SU(4) with fifteen generators:

{(~⌧ ⌦ 1D), (1F ⌦ ~⌃k), (~⌧ ⌦ ~⌃k)} . (38)

The corresponding transformations are a trivial generalization of Eq. (26) obtained by replacing the generators ~⌃
by those listed in (38). Also the group SU(4) is a symmetry of the quark - chromo-electric interaction terms of the
QCD lagrangian, while the quark - chromo-magnetic interaction as well as the kinetic term break it. The S2 ⇥SU(4)
transformations connect the following J = 1 operators from Table II:

(Vx, Vy, Ax, Ay, Tt, Xt) , (39)

(Vt, At, Tx, Ty, Xx, Xy) . (40)

These are the multiplets of the isovector operators that are discussed in the present paper. The SU(4) symmetry
requires degeneracy within both, the (39) as well as the (40) multiplets, while a degeneracy of the normalized corre-
lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
SU(4) singlets.

IV. LATTICE TECHNICALITIES

The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider

C�(nz) =
X

nx,ny,nt

hO�(nx, ny, nz, nt)O�(0, 0)†i . (42)

Obviously this is the lattice version of the continuum form in Eq. (1).

3 S2 here denotes the permutation- or symmetric group for x $ y interchanges.

SU(4)
<latexit sha1_base64="mOzrIJQwlGsARy52WY0egI8lj1M=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJHokevGI0RUS2JBu6UJD2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+PHnWcKkJ9EvNYdUKsKWeS+oYZTjuJoliEnLbD8c3Mbz9RpVksH8wkoYHAQ8kiRrCxkn/vVxvn/XLFrblzoFXi5aQCOVr98ldvEJNUUGkIx1p3PTcxQYaVYYTTaamXappgMsZD2rVUYkF1kM2PnaIzqwxQFCtb0qC5+nsiw0LriQhtp8BmpJe9mfif101NdBVkTCapoZIsFkUpRyZGs8/RgClKDJ9Ygoli9lZERlhhYmw+JRuCt/zyKnms17yLWv2uUWle53EU4QROoQoeXEITbqEFPhBg8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwCQZI3d</latexit>
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lators from the multiplet (40) is also consistent with free non-interacting quarks. Obviously the chiral multiplets of
the PS and S bilinears are not subject to this degeneracy.

The complete S2 ⇥SU(4) multiplets in addition also include the isoscalar partners of Ax, Ay, Tt and Xt in Eq. (39)
as well as the isoscalar partners of At, Tx, Ty, Xx and Xy in Eq. (40). The isoscalar partners of Vx, Vy and Vt are the
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The correlators discussed in the previous section are evaluated on the JLQCD configurations for full QCD with
NF = 2 flavors of domain wall fermions (for details concerning the configurations see [16, 17]). In this setup we choose
L5, the extent of the auxiliary 5-th dimension, such that for all our ensembles the violation of the Ginsparg-Wilson
condition is less than 1 MeV. The quark propagators are computed with the domain wall Dirac operator after three
steps of stout smearing. Fermion fields are periodic in the spatial directions and anti-periodic in time.

We use the Symanzik-improved gauge action at inverse gauge couplings �g in a range between �g = 4.1 and �g = 4.5,
and with the di↵erent temporal lattice extents we use, Nt = 4, 6, 8 and Nt = 12, we cover a range of temperatures
between T ' 220 MeV and T ' 960 MeV. For the bare quark mass parameters mu = md ⌘ mud we use the value
mud = 0.001 which corresponds to physical quark masses at our di↵erent temperatures in the range between 2 MeV
and 4 MeV. We have also performed simulations with mud = 0.01, mud = 0.005 and observed stability of our results
against quark mass variation because in the temperature range we consider (220 – 960 MeV) these quark masses
are essentially negligible due to temperature e↵ects. Further details concerning the chiral properties for our set of
parameters are given in [16, 17]. The complete list of our ensembles and their parameters is provided in Table III.

As already discussed, we measure finite temperature spatial correlators in the z-direction, as was first suggested in
[9]. To compare the results from our di↵erent ensembles we plot the correlators as a function of the dimensionless
combination

z T = (nza)/(Nta) = nz/Nt , (41)

where z is the physical distance in the correlators, T the temperature, a the lattice constant, nz the distance in lattice
units and Nt the temporal lattice extent.

We project to zero-momentum by summing over all lattice sites in slices orthogonal to the z-direction, i.e., we
consider
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Test with spatial correlators (screening masses)

JLQCD configurations

Nf = 2 DW , N⌧ = 4, 6, 8, 12
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physical light quark masses

[Rohrhofer et al., 19], parallel

Degeneracy pattern and exponentials incompatible with free quarks:  “stringy fluid” for                                   Tpc < T < 900 MeV
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T > Tpc
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9
Figure 7: Spatial correlation functions of the E1,E2 multiplets of the SU(4) chiral spin symmetry, as a
function of temperature and in comparison to free quark correlators (dashed lines) [38].

i.e. above the chiral crossover, a near-degeneracy pattern of different quantum number channels
is observed, which is consistent with the multiplets of the SU(4)-symmetry worked out in [38].
As the temperature is increased to 380 MeV, these multiplets move closer to each other, while in
both cases they differ clearly from the leading-order perturbative pattern expected for free quarks.
Finally, as the temperature approaches ∼ 1 GeV, the different multiplets fall on top of each other
and approach those of free quark correlators, signalling restoration of the full chiral symmetry.

This has implications for the active degrees of freedom in the temperature range just above
the chiral crossover. The nearly intact multiplet structure implies suppression of colour-magnetic
interactions, and the authors interpret the active degrees of freedom as chiral quarks bound to
colour singlets by colour-electric strings. For this reason they term this regime, which has more
resemblance to a hadron gas than to a plasma, a “stringy fluid”.

This finding based on an emergent chiral symmetry is in fact consistent with earlier studies
distinguishing between colour-electric and -magnetic degrees of freedom by the discrete transfor-
mation of Euclidan time reversal (or CT in Minkowski time) [40]. The lowest screening masses
in the framework of dimensionally reduced QCD, valid for temperatures above the crossover, and
thus the dominant degrees of freedom, correspond to colour-electric operators, with colour mag-
netic ones contributing to excited states only [41]. This is contrary to the perturbative ordering of
electric and magnetic scales,∼ gT,g2T , respectively, which is only realised at much higher temper-
atures. Finally, the picture of a hadron-like stringy fluid is also consistent with sequential melting
scneario of heavy quarkonia at T > Tpc.

3.2 The crossover at small baryon densities

There are three methods that have been used so far to extract information about the phase
structure at the physical point for small baryon density. All of them introduce some approximation
which can be controlled as long as µ/T <∼1: i) reweighting [42], ii) Taylor expansion in µ/T [43]
and iii) anlaytic continuation from imaginary chemical potential [26, 27]. When the QCD pressure
is expressed as a series in baryon chemical potential,

p(T,µB)

T 4 =
p(T,0)

T 4 +
∞

∑
n=1

1
2n!

χB
2n(T )

(µB

T

)2n
, χB

2n(T ) =
∂ 2n( p

T 4 )

∂ ( µB
T )2n

∣∣∣
µB=0

, (3.3)

the Taylor coefficients are the baryon number fluctuations evaluated at zero density, which can also
be computed by fitting to untruncated results at imaginary µB, thus permitting full control of the
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Figure 2: Temperature dependence of the baryon number susceptibility ratios cB
4 /cB

2 (left panel) and
cB

6 /cB
2 (right panel), as calculated within the CEM (black stars) and the rational function model of

Ref. [19] (dashed red lines). Lattice data of the Wuppertal-Budapest [13] and HotQCD collaborations [12]
are depicted by the blue and green bands, respectively.

3. The CEM equation of state

The CEM pressure is obtained by integrating the net baryon density (2.5) over µB:

p(T,µB)

T 4 =
p0(T )

2
� 2

27p2
b̂2

1

b̂2

�
4p2 [Li2 (x+)�Li2 (x�)]+3 [Li4 (x+)�Li4 (x�)]

 
,

=
p0(T )

2
+

Dp(T,µB)

T 4 . (3.1)

The CEM input parameters are the temperature-dependent coefficients p0(T ), b1(T ), and b2(T ).
At high temperatures (T & 130 MeV) these can be extracted from the available lattice data. At
low temperatures they can be matched to the equation of state of the hadron resonance gas (HRG)
model. This matching is achieved through a smooth switching function [20].

The first Fourier coefficient, b1(T ), is parameterized as follows:

b1(T ) = [1�S(T )] bhrg
1 (T )+S(T )blat

1 (T ), (3.2)

S(T ) = exp

"✓
� T

T0

◆�r
#

. (3.3)

Here bhrg
1 is the partial pressure of baryons and antibaryons at µB = 0 in the ideal hadron resonance

gas (HRG) model. We evaluate it using the HRG model of Ref. [14]. blat
1 corresponds to the

lattice data of the Wuppertal-Budapest collaboration [14] at sufficiently high temperatures. We
parametrize blat

1 (T ) as

blat
1 (T ) =

bsb
1 +an/tb +bn/t2

b

1+ad/tb +bd/t2
b

, tb = T/T0 , (3.4)

with the following parameter values:

an = �0.940, bn = 0.345, ad = �1.336, bd = 0.502. (3.5)

4

Interpretation of lattice data: radius of convergence

General investigation of estimators for Lee-Yang zeroes,  
radius of convergence:   [Giordano, Pasztor 2019]
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FIG. 6. Simple ratio estimators compared to the correct ra-
dius of convergence, as given by the analysis of the Lee-Yang
zeros (the light green arrow) for the case of the fugacity pa-
rameter ⇣ = eµ̂−1 (top) and the chemical potential µ̂ (bottom).

starts to dominate around k = O(10). For the chemical
potential expansion the situation is much better, with
only O(10) Lee-Yang zeros contributing to the second co-
e�cient, and the sum over zeros saturating sooner. This
suggests that our estimators will work better with the
chemical potential, as we shall see.

We now turn to the study of the radius of convergence.
We first look at the ratio estimators, that can be seen
in Fig. 6. Notice that low orders of the ratio estima-
tor overestimate the real radius of convergence, making
them very misleading. At higher orders, notice that the
ratio estimator does not converge to a specific value, just
as expected from our analytical discussion in Section II.
Interestingly, the statistical error of the ratio estimator
does get smaller when it is close to the correct value, i.e.,

when � cos(k✓)
cos((k+1)✓) � ≈ 1. Nonetheless, it is still quite noisy

there and never reaches the high statistical precision of
our newly proposed estimators (see below), and based
on the ratio estimator alone it would not be possible to
conclude what the radius of convergence is.

In previous studies [11, 23, 53–55] it was customary to
compare the ratio estimators for the Taylor expansion in
the baryon number chemical potential to the hadron res-
onance gas [56, 57]. As there is no finite µ transition in
this model, when such a comparison yields results con-
sistent with the HRG one concludes that there are no
signs of criticality in the fluctuations under scrutiny. In
the case presented here, the HRG prediction for the first

ratio is
c
(µ̂)
1

c
(µ̂)
2

= 1�2!
1�4! = 6, independently of the hadron spec-

trum. This matches our numerical results within error

bars. The second ratio in the HRG is
c
(µ̂)
2

c
(µ̂)
3

= 1�4!
1�6! = 30.

This is two orders of magnitude higher than our numer-
ical data, so one clearly sees some sign of non-hadronic
matter, but without our improved estimators it is unclear
how one can make more quantitative statements.

We now go on to the improved convergence radius es-
timators proposed in this paper. Both the original and
our modified version of the Mercer-Roberts estimator can
be seen for the fugacity parameter ⇣ in Fig. 7. As can
be seen, by the time the original Mercer-Roberts esti-
mator starts to become linear in 1�n, so that a linear fit
could be performed to obtain the convergence radius, our
modified estimator already gives the correct answer. An-
other way to quantify the improvement achieved with our
modification is to say that to get the correct convergence
radius within 1� of the statistical error bars, our estima-
tor needs 13 orders of the expansion, while the original
Mercer-Roberts needs 20. A similar comparison for the
case of the chemical potential can be seen in Fig. 8. We
see that the convergence radius estimators for the chem-
ical potential work significantly better compared to the
fugacity parameter, converging to the correct value al-
ready with a 6th order (i.e., µ̂12) expansion. Both of the
Taylor series have a convergence radius determined by
the leading Lee-Yang zero at Re µ̂ = 0.533 ± 0.020 and
Im µ̂ = 0.244 ± 0.016 (Fig. 3).

The doubled index estimator and the doubled index
ratio estimator are compared to the Cauchy-Hadamard
estimator for the fugacity parameter in Fig. 9 (top) and
for the chemical potential in Fig. 9 (bottom). The dou-
bled index estimator and the Cauchy-Hadamard estima-
tor behave quite similarly qualitatively, but our proposal
is a big improvement over the other, needing much fewer
Taylor coe�cients to approach the correct value within
1�.

Two estimators for cos ✓ can be seen in Fig. 10. For low
orders in the Taylor series these estimators happen to be
outside the range [−1 ∶ 1], which very clearly indicates
that the leading Lee-Yang zeros is not dominating the
series, as only in the case of a single Lee-Yang zero will
these combinations reduce to a single cosine.

Finally, let us turn to the analysis of the Fisher zeros.
In this case we do not calculate the cumulants starting

Singularity structure of QCD partition function, CP, Z(N)-symmetries:

Ratio test fails in any finite volume, extrapolation unclear

Mercer-Roberts, Cauchy-Hadamard work

Construct improved estimators with faster convergence     
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FIG. 7. Top: The original and our modified Mercer-Roberts
estimators for the convergence radius as a function of the
expansion order n needed to calculate the given estimator
for the variable ⇣ = eµ̂ − 1. Data points are slightly shifted
for visual clarity. The estimators are compared to the correct
radius of convergence, as given by the analysis of the Lee-Yang
zeros (the light green arrow). Bottom: The same quantities,
but as a function of 1�n for higher orders of the expansion.

from the partition function zeros, and therefore the large
cancellations of the errors, coming from the correlations
between the di↵erent cumulants, can be directly demon-
strated. This is shown in Fig. 11, where we show some
estimators for the radius and for the cosine of the phase,
and compare them to results obtained by reweighting to
complex �. We can see that the ratio estimator again
does not work, while our newly proposed estimators work
well, and give error bars identical to those obtained with
reweighting.
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FIG. 8. Top: The original and our modified Mercer-Roberts
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expansion order n needed to calculate the given estimator
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a function of 1�n for higher orders of the expansion.

IV. SUMMARY AND OUTLOOK

In studies of QCD at finite chemical potential, it is a
standard approach to try to infer the position of the criti-
cal endpoint from the radius of convergence of the Taylor
expansion of the pressure, either in the chemical poten-
tial over temperature, µ̂, or in the fugacity parameter
⇣ = eµ̂ − 1. In this paper we have demonstrated, on gen-
eral grounds, that the simple ratio estimator cannot work
if one wants to determine the radius of convergence in a
finite volume first, and take the thermodynamic limit af-
terwards, and has serious drawbacks even if the radius of
convergence is computed directly in the thermodynamic

Staggered LQCD, Nf = 4, 63 ⇥ 4
<latexit sha1_base64="N/kXi8nXcDeGOSLVd3zLmScdiK0=">AAAB+nicbVDLSgNBEJz1GeNro0cvg0HwIGE3CepFCHrxJBHMA5J1mZ3MJkNmH8z0KmHNp3jxoIhXv8Sbf+Mk2YMmFjQUVd10d3mx4Aos69tYWl5ZXVvPbeQ3t7Z3ds3CXlNFiaSsQSMRybZHFBM8ZA3gIFg7lowEnmAtb3g18VsPTCoehXcwipkTkH7IfU4JaMk1Czeuf1E9Ob2vdIEHTOGqaxatkjUFXiR2RoooQ901v7q9iCYBC4EKolTHtmJwUiKBU8HG+W6iWEzokPRZR9OQ6DVOOj19jI+00sN+JHWFgKfq74mUBEqNAk93BgQGat6biP95nQT8cyflYZwAC+lskZ8IDBGe5IB7XDIKYqQJoZLrWzEdEEko6LTyOgR7/uVF0iyX7EqpfFst1i6zOHLoAB2iY2SjM1RD16iOGoiiR/SMXtGb8WS8GO/Gx6x1ychm9tEfGJ8/JbmSog==</latexit>
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Fig. 2. Ratio estimators of the susceptibility rχ2n ≡
∣∣∣∣∣

2n(2n−1)χB
2n

χB
2n+2

∣∣∣∣∣ on an Nt = 12 4stout-improved staggered lattice.

3. A closer look at the lattice results for Nt = 12

To shed some light on the previous result consider the following toy model. Start with some parametriza-
tion of the curve χB

1 /µB as a function of T at µ = 0. Assume that the only difference in the physics at finite
µ is a shift in this curve in the T direction. The inflection point of this curve is one possible definition of Tc,
so shift this curve by using the curvature κ of the cross-over line found in the literature. This gives a model
prediction of χB

1 for any finite µ, and by differentiation at zero chemical potential, it also gives predictions
of χB

4 , χB
6 and χB

8 . Comparison of this toy model with the actual lattice data is shown in Fig. 2.
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Fig. 3. Comparison of the simple toy model described in the text, with the actual lattices simulations.

The discussion of this toy model suggests the following non-trivial consequence for modeling: In order
to reproduce the lattice data on χB

2 , χB
4 , χB

6 and χB
8 at the present accuracy all a model has to do is to reproduce

χB
2 and the curvature of the cross-over line κ, without the crossover getting stronger already at low values of

the chemical potential. As long as these conditions are met, the features of the higher order baryon number
susceptibilities will be automatically reproduced.

Among other things, this discussion suggests that near and above Tc, the curvature of the crossover
implies rχ2 < rχ4 and rχ4 > rχ6 , a feature clearly visibly on the lattice data at T = 165MeV. Here the closest
Lee Yang zero most likely has a large imaginary part, and the ratio estimator is not expected to give a good
estimate of the radius of convergence.

As the existence of κ implies rχ4 > rχ6 near or slightly above Tc, while the HRG rχ4 < rχ6 , by continuity,
there must be a temperature T∗ < Tc where rχ4 = rχ6 . This is an apparent convergence in the first few ratio

Z. Fodor et al. / Nuclear Physics A 982 (2019) 843–846 845

 [Fodor et al., NPA 2019]

….another toy model without phase  
transition correctly predicts the data……

applied to state of the art QCD data N⌧ = 12
<latexit sha1_base64="RvR93fPKFWE9rvfJ0w/q+dsmvOM=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IsniWAekixhdjJJhszsLjO9QljyFV48KOLVz/Hm3zhJ9qCJBQ1FVTfdXUEshUHX/XZyK6tr6xv5zcLW9s7uXnH/oGGiRDNeZ5GMdCughksR8joKlLwVa05VIHkzGN1M/eYT10ZE4QOOY+4rOghFXzCKVnq863aQJldepVssuWV3BrJMvIyUIEOtW/zq9CKWKB4ik9SYtufG6KdUo2CSTwqdxPCYshEd8LalIVXc+Ons4Ak5sUqP9CNtK0QyU39PpFQZM1aB7VQUh2bRm4r/ee0E+5d+KsI4QR6y+aJ+IglGZPo96QnNGcqxJZRpYW8lbEg1ZWgzKtgQvMWXl0mjUvbOypX781L1OosjD0dwDKfgwQVU4RZqUAcGCp7hFd4c7bw4787HvDXnZDOH8AfO5w/emY/L</latexit>

So far no conclusive sign of criticality

Altogether:

17

Figure 8: Baryon number fluctuations χB
4 ,χ

B
6 from the lattice in comparison with CEM, RFM models [44]

(left, middle), and χB
8 fitted with a polynomial model without criticality [45] (right).

systematics between ii) and iii). They are presently known up to 2n = 8 on Nτ = 16 lattices, Fig. 8,
and in principle also observable experimentally. For a review of the equation of state relating
to heavy ion phenomenology, see [46]. Note also, that this regime appears now accessible by
complex Langevin simulations without series expansion, albeit not yet for physical quark masses
[47]. From the susceptibility of an appropriately normalised chiral condensate follows the pseudo-
critical temperature, similarly as a power series. The latest continuum extrapolated results are

Tpc(µB)

Tpc(0)
= 1+κ2

(µB

T

)2
+ . . . , κ2 =





0.0135(20) imag. µ,stout-sm. stag. [48]
0.0145(25) Taylor, stout-sm. stag. [48, 49]
0.016(5) Taylor, HISQ [50]

(3.4)

with Tpc(0) = 156.5(1.5) MeV [50], and the sub-leading term insignificant to current accuracy.

3.3 The radius of convergence

If a function with a given domain of analyticity in its complex argument is expanded in a
power series, the radius of convergence specifies the distance between the expansion point and the
nearest singularity. This implies that the location (Tc,µc

B) of a non-analytic QCD phase transition
constitutes an upper bound on the radius of convergence of the pressure series (3.3). It has been
argued in the literature that this can be turned around in order to search for a critical point: if a
finite radius of convergence can be extracted from the pressure series for real parameter values, it
should signal a phase transition. The standard estimator used in the literature is the ratio test of
consecutive coefficients, whose extrapolation to infinite order yields the radius of convergence,

r = lim
n→∞

r2n , r2n =

∣∣∣∣
2n(2n−1)χB

2n

χB
2n+2

∣∣∣∣ . (3.5)

In practice, only the first few coefficients are available. Nevertheless, several constraints on a
critical endpoint have been based on r2n and published, a recent compilation can be found in [51].

However, it has recently become clear in model studies that the ratio estimator is inappropriate
for the case at hand. As an example, consider the fugacity expansion of baryon number density. At
imaginary chemical potential, this is just a Fourier series whose coefficients can be computed on
the lattice without sign problem,

nB

T 3 |µB=iθBT= = i∑
k

bk(T )sin(kµB/T ) , bk(T ) =
2
π

∫ π

0
dθB Im(

nB(T, iθBT )
T 3 sin(kθB) . (3.6)
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Figure 3. The Domb-Sykes 1/r2
n�1 vs 1/n plots, calculated

within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB) � p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n

. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2
, is used.

The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n � 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2

n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B

4 are similar and not shown). Note how the di↵er-
ent orders jump between several branches of 1/r2

n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T

since the limit lim
n!1

rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2

n

cn+2 cn � c2
n+1

����
1/4

. (10)

The corresponding 1/r2
n�1 vs 1/n plot is shown by the

full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.
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Figure 3. The Domb-Sykes 1/r2
n�1 vs 1/n plots, calculated

within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB) � p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n

. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2
, is used.

The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n � 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2

n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B

4 are similar and not shown). Note how the di↵er-
ent orders jump between several branches of 1/r2

n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T

since the limit lim
n!1

rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2

n

cn+2 cn � c2
n+1

����
1/4

. (10)

The corresponding 1/r2
n�1 vs 1/n plot is shown by the

full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.

Ratio estimator only good for equal or alternating signs

[Mercer, Roberts,  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Figure 4. The temperature dependence of the radius of
convergence rµ/T of the Taylor expansion in µB/T of the
pressure, calculated within the CEM-LQCD and CEM-
HRG (b = 1 fm3) models. The dash-dotted blue line
depicts the µB/T = ⇡ value, which corresponds to the
Roberge-Weiss transition at imaginary chemical potential.
Various QCD critical point estimates [44–48] are shown by
the black symbols.

The temperature dependence of the radius of
convergence, rµ/T , as calculated within the CEM-
LQCD (red stars) and the CEM-HRG model (dashed
line) models using the Mercer-Roberts procedure, is
presented in Fig. 4. rµ/T is a smooth function of
T and it is finite, at all temperatures considered.
The corresponding limiting singularities lie at com-
plex µB/T values, as follows from the absence of a
regular asymptotic behavior of the Taylor expansion
coe�cients. rµ/T decreases with temperature and it
approaches the asymptotic value of rµ/T = ⇡ at higher
temperatures, T > 190 MeV. This value can be iden-
tified with the Roberge-Weiss (R-W) transition [36],
which was predicted to appear at su�ciently high tem-
peratures at imaginary chemical potential values of
Im [µB/T]c = ⇡(2k+1), and studied quite extensively
in LQCD simulations [37–43]. This transition is a con-
sequence of the R-W periodicity of the QCD partition
function, Z(µB) = Z(µB + i2⇡T ), due to the center
symmetry [36], which is fully respected by the CEM.

We have cross-checked our results for rµ/T by con-
structing Padé approximants [49, 50] for the Taylor
expansion of �B

2 in µB/T within the CEM-LQCD
model, and in all cases observe poles corresponding
to the limiting singularity of the Taylor expansion.
These poles are located at Im[µB/T]c = ⇡, at all
temperatures, while Re[µB/T]c values decrease to-
wards zero at high temperatures. The absolute val-
ues, |[µB/T ]c|, agree perfectly with the rµ/T values in

Fig. 4.

It is interesting that numerical lattice studies at
purely imaginary µ indicate TRW = 208 ± 5 MeV for
the endpoint temperature of the R-W transition [43],
a temperature value where rµ/T is already almost in-
distinguishable from ⇡ in CEM-LQCD. We conclude
that the radius of convergence of the Taylor series at
T > 135 MeV is only determined by the singularities
in the complex plane which appear to be smoothly
connected to the R-W transition at high tempera-
tures, a scenario suggested in Refs. [8, 10]. The CEM-
LQCD “knows” about the the spontaneous breaking
of the center symmetry at the high temperature R-W
transition indirectly, being matched to baryonic exci-
tations at low temperatures and to quark degrees of
freedom at high temperatures. The exact nature and
relation to the R-W transition of the singularities at
intermediate temperatures still need to be clarified.
We note that CEM also inherits aspects of the chiral
symmetry restoration, in the form of the input coe�-
cients b1(T ) and b2(T ) taken from the lattice.

In any case, our analysis within CEM-LQCD and
CEM-HRG shows no evidence for the existence of a
phase transition or a critical point at real µB/T <
rµ/T , with rµ/T � ⇡ at all temperatures considered.
This is consistent with all available lattice results at
zero and imaginary chemical potential, but in con-
trast to various other QCD critical point estimates
available in the literature: these are based on lat-
tice reweighting techniques [44], experimental finite-
size scaling analyses [45], the Dyson-Schwinger [46] or
holographic [47, 48] approaches, which are also shown
in Fig. 4. We note that CEM is not full QCD, there-
fore we do not rule out conclusively these other esti-
mates. Note also that our results at T < 135 MeV are
based on the HRG extrapolation of the lattice data,
and therefore should be treated with care.

The particular CEM formulation presented here is
simple and powerful, but it has limitations. The re-
lation (5) expressing the higher-order Fourier coe�-
cients through the first two is likely to get modified
whenever e↵ects of genuine many-body interactions
become important. We therefore expect the model to
break down at large µB/T values, e.g., in the dense
nuclear matter region. Note that the formalism itself
can accommodate any pressure function periodic un-
der the µB ! µB + i 2⇡T transformation, as required
by the Z(3) symmetry of QCD. The CEM model can
thus be extended once new and possibly contradicting
lattice data become available. However, given that
CEM is consistent with all presently available lattice
data we conclude that its range of applicability is at

CEM prediction:  
 
Closest singularity in complex plane  
is Roberge-Weiss transition (endpoint estimate agrees with lattice!)  
 
 
No critical point for real
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least as large as that of current lattice methods.
To summarize, a novel Cluster Expansion Model for

the QCD equation of state has been developed and
applied to calculate the baryon number susceptibili-
ties at µ = 0, to very high order. The only model
inputs are the partial pressures in the |B| = 1 and
|B| = 2 sectors, taken from the lattice simulations at
imaginary µB . The model yields excellent agreement
with the available lattice data for �B

2 , �B
4 /�B

2 , and
�B

6 /�B
2 . The extended model predictions for �B

8 , �B
10,

and �B
12 shall be verified by future lattice data. The

commonly used ratio estimator is unable to determine
the radius of convergence of the Taylor series of the
pressure in µB/T , due to a non-trivial asymptotic be-
havior of the Taylor coe�cients. The radius of conver-
gence is instead determined with the more elaborate
Mercer-Roberts estimator, which provides finite val-
ues of the convergence radii at all temperature values
considered, 135 < T < 230 MeV, in full agreement
with the singularities of Padé approximants. These
singularities lie in the complex plane and appear to
be smoothly connected to the R-W transition at high
temperatures and imaginary (baryo)chemical poten-
tial. The analysis within CEM shows no evidence
for the existence of a phase transition or a critical
point at real values of the baryochemical potential at
µB/T . ⇡ for temperatures above 135 MeV.

The CEM model can be straightforwardly extended
to calculate the equation of state of QCD at finite
µB/T , by supplying the B = 0 partial pressure p0(T )
as additional model input. Furthermore, the CEM for-
malism is rather flexible, and the model assumptions
and input can be modified if new and contradicting
lattice data becomes available. 2
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Interpretation of lattice data: radius of convergence
4

Figure 3. The Domb-Sykes 1/r2
n�1 vs 1/n plots, calculated

within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB) � p(T, 0)

T 4
=

1X

n=1

�2n(T )

(2n)!

⇣µB

T

⌘2n

. (9)

The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2
, is used.

The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B

2

expansion, and cn = �2n/(2n � 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2

n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
�B

4 are similar and not shown). Note how the di↵er-
ent orders jump between several branches of 1/r2

n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T

since the limit lim
n!1

rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2

n

cn+2 cn � c2
n+1

����
1/4

. (10)

The corresponding 1/r2
n�1 vs 1/n plot is shown by the

full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.
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Figure 3. The Domb-Sykes 1/r2
n�1 vs 1/n plots, calculated

within the CEM-LQCD model at T = 160 MeV using (a)
ratio (open symbols) and (b) Mercer-Roberts (full sym-
bols) estimators for radius of convergence of the Taylor
expansion of p/T 4 (circles), �B

2 (squares), and �B
4 (dia-

monds). The linear extrapolations of the Mercer-Roberts
estimators to 1/n = 0 are depicted by the dashed lines
ending at a circle.

in some cases, hundreds of bk(T ) coe�cients. All of
them, except the first two, are predicted by CEM.
The CEM-LQCD predictions for �B

8 , �B
10, and �B

12 are
shown in Fig. 2(d)-(f). The comparison with future
lattice data will be able to confirm (or refute) the va-
lidity of the CEM approach presented here.

The CEM-HRG model results, as shown by the
dashed lines in Fig. 2, agree very well with CEM-
LQCD calculations, up to T ' 180 MeV, for all con-
sidered observables. Hence, the drastic temperature
dependence of the baryon number fluctuations in this
temperature range, as well as the particularly strong
deviations from the ideal HRG baseline – the Skellam
distribution – are convincingly interpreted in terms of
repulsive baryonic interactions (see also [18, 19, 21]).

The ability of the CEM-formalism to calculate
baryon number susceptibilities to very high order pro-
vides a unique opportunity to analyze the radius of
convergence of the Taylor expansion of the QCD pres-
sure,

p(T, µB) � p(T, 0)

T 4
=
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The radius of convergence, rµ/T , of this series at a
given temperature corresponds to the distance to the
nearest singularity in the complex µB/T plane and
this has been used in various attempts to constrain
the location of the critical point of QCD by numer-
ical evaluation of a few leading coe�cients in lattice
QCD [26–28] or in e↵ective models [29–31]. Deriva-

tives of the pressure series expansion may be used
equally well. In the present work, estimates based on
the Taylor series of p/T 4, �B

2 , and �B
4 are analyzed.

First the ratio estimator, rn = |cn/cn+1|1/2
, is used.

The square root in this estimator [as well as the ex-
tra square root in Eq. (10)] appears due to the fact
that the Taylor expansion (9) is actually in (µB/T )2

rather than just in µB/T . Here cn = �2n/(2n)! for
the p/T 4 expansion, cn = �2n/(2n � 2)! for the �B
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expansion, and cn = �2n/(2n � 4)! for the �B
4 expan-

sion. The n ! 1 limit of rn, if it exists, is the same
for all three expansions and corresponds to the true
radius of convergence. This limit can be determined
with the Domb-Sykes presentation [32], by plotting
1/r2

n�1 versus 1/n for a finite number of terms, and
then extrapolating the result linearly to 1/n = 0. To
illustrate the behavior of the rµ/T estimators we show
T = 160 MeV as an example, the behavior at all other
temperatures investigated is similar. The Domb-Sykes
plot for the Taylor series of p/T 4, as obtained within
the CEM-LQCD model at T = 160 MeV by using the
first 200 terms of the Taylor expansion, is depicted in
Fig. 3a by the open symbols. (The plots for �B

2 and
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4 are similar and not shown). Note how the di↵er-
ent orders jump between several branches of 1/r2

n�1 as
1/n approaches zero, with no unique limiting value in
sight. This behavior is caused by the irregular asymp-
totic structure of the Taylor coe�cients. Convergence
of a Domb-Sykes plot for the ratio test requires the
coe�cients to asymptotically be of the same sign or
to alternate in sign. Neither of the two scenarios is
realized in the CEM-LQCD: even at very high order,
at least two positive- and at least two negative coef-
ficients appear regularly in a row. Therefore, the ra-
tio estimator does not give a correct estimate of rµ/T

since the limit lim
n!1

rn simply does not exist. (Note

that the ratio estimator is commonly used in the lat-
tice QCD studies of the Taylor expansion [24, 33, 34]).

More elaborate estimators do exist which deal with
the irregular asymptotic structure of the Taylor coef-
ficients. Consider the Mercer-Roberts estimator [35],

rn =

����
cn+1 cn�1 � c2

n

cn+2 cn � c2
n+1

����
1/4

. (10)

The corresponding 1/r2
n�1 vs 1/n plot is shown by the

full symbols in Fig. 3b. For all three Taylor expan-
sions, the Mercer-Roberts estimators appear to con-
verge to the same point as 1/n ! 0. Linear extrapola-
tions to 1/n ! 0 give a value for the radius of conver-
gence rµ/T . The behavior of both estimators shown
in Fig. 3 is similar at all considered temperatures.

Ratio estimator only good for equal or alternating signs

[Mercer, Roberts,  
 SIAM J. Appl. Math., 90]
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Figure 4. The temperature dependence of the radius of
convergence rµ/T of the Taylor expansion in µB/T of the
pressure, calculated within the CEM-LQCD and CEM-
HRG (b = 1 fm3) models. The dash-dotted blue line
depicts the µB/T = ⇡ value, which corresponds to the
Roberge-Weiss transition at imaginary chemical potential.
Various QCD critical point estimates [44–48] are shown by
the black symbols.

The temperature dependence of the radius of
convergence, rµ/T , as calculated within the CEM-
LQCD (red stars) and the CEM-HRG model (dashed
line) models using the Mercer-Roberts procedure, is
presented in Fig. 4. rµ/T is a smooth function of
T and it is finite, at all temperatures considered.
The corresponding limiting singularities lie at com-
plex µB/T values, as follows from the absence of a
regular asymptotic behavior of the Taylor expansion
coe�cients. rµ/T decreases with temperature and it
approaches the asymptotic value of rµ/T = ⇡ at higher
temperatures, T > 190 MeV. This value can be iden-
tified with the Roberge-Weiss (R-W) transition [36],
which was predicted to appear at su�ciently high tem-
peratures at imaginary chemical potential values of
Im [µB/T]c = ⇡(2k+1), and studied quite extensively
in LQCD simulations [37–43]. This transition is a con-
sequence of the R-W periodicity of the QCD partition
function, Z(µB) = Z(µB + i2⇡T ), due to the center
symmetry [36], which is fully respected by the CEM.

We have cross-checked our results for rµ/T by con-
structing Padé approximants [49, 50] for the Taylor
expansion of �B

2 in µB/T within the CEM-LQCD
model, and in all cases observe poles corresponding
to the limiting singularity of the Taylor expansion.
These poles are located at Im[µB/T]c = ⇡, at all
temperatures, while Re[µB/T]c values decrease to-
wards zero at high temperatures. The absolute val-
ues, |[µB/T ]c|, agree perfectly with the rµ/T values in

Fig. 4.

It is interesting that numerical lattice studies at
purely imaginary µ indicate TRW = 208 ± 5 MeV for
the endpoint temperature of the R-W transition [43],
a temperature value where rµ/T is already almost in-
distinguishable from ⇡ in CEM-LQCD. We conclude
that the radius of convergence of the Taylor series at
T > 135 MeV is only determined by the singularities
in the complex plane which appear to be smoothly
connected to the R-W transition at high tempera-
tures, a scenario suggested in Refs. [8, 10]. The CEM-
LQCD “knows” about the the spontaneous breaking
of the center symmetry at the high temperature R-W
transition indirectly, being matched to baryonic exci-
tations at low temperatures and to quark degrees of
freedom at high temperatures. The exact nature and
relation to the R-W transition of the singularities at
intermediate temperatures still need to be clarified.
We note that CEM also inherits aspects of the chiral
symmetry restoration, in the form of the input coe�-
cients b1(T ) and b2(T ) taken from the lattice.

In any case, our analysis within CEM-LQCD and
CEM-HRG shows no evidence for the existence of a
phase transition or a critical point at real µB/T <
rµ/T , with rµ/T � ⇡ at all temperatures considered.
This is consistent with all available lattice results at
zero and imaginary chemical potential, but in con-
trast to various other QCD critical point estimates
available in the literature: these are based on lat-
tice reweighting techniques [44], experimental finite-
size scaling analyses [45], the Dyson-Schwinger [46] or
holographic [47, 48] approaches, which are also shown
in Fig. 4. We note that CEM is not full QCD, there-
fore we do not rule out conclusively these other esti-
mates. Note also that our results at T < 135 MeV are
based on the HRG extrapolation of the lattice data,
and therefore should be treated with care.

The particular CEM formulation presented here is
simple and powerful, but it has limitations. The re-
lation (5) expressing the higher-order Fourier coe�-
cients through the first two is likely to get modified
whenever e↵ects of genuine many-body interactions
become important. We therefore expect the model to
break down at large µB/T values, e.g., in the dense
nuclear matter region. Note that the formalism itself
can accommodate any pressure function periodic un-
der the µB ! µB + i 2⇡T transformation, as required
by the Z(3) symmetry of QCD. The CEM model can
thus be extended once new and possibly contradicting
lattice data become available. However, given that
CEM is consistent with all presently available lattice
data we conclude that its range of applicability is at

CEM prediction:  
 
Closest singularity in complex plane  
is Roberge-Weiss transition (endpoint estimate agrees with lattice!)  
 
 
No critical point for real

6

least as large as that of current lattice methods.
To summarize, a novel Cluster Expansion Model for

the QCD equation of state has been developed and
applied to calculate the baryon number susceptibili-
ties at µ = 0, to very high order. The only model
inputs are the partial pressures in the |B| = 1 and
|B| = 2 sectors, taken from the lattice simulations at
imaginary µB . The model yields excellent agreement
with the available lattice data for �B

2 , �B
4 /�B

2 , and
�B

6 /�B
2 . The extended model predictions for �B

8 , �B
10,

and �B
12 shall be verified by future lattice data. The

commonly used ratio estimator is unable to determine
the radius of convergence of the Taylor series of the
pressure in µB/T , due to a non-trivial asymptotic be-
havior of the Taylor coe�cients. The radius of conver-
gence is instead determined with the more elaborate
Mercer-Roberts estimator, which provides finite val-
ues of the convergence radii at all temperature values
considered, 135 < T < 230 MeV, in full agreement
with the singularities of Padé approximants. These
singularities lie in the complex plane and appear to
be smoothly connected to the R-W transition at high
temperatures and imaginary (baryo)chemical poten-
tial. The analysis within CEM shows no evidence
for the existence of a phase transition or a critical
point at real values of the baryochemical potential at
µB/T . ⇡ for temperatures above 135 MeV.

The CEM model can be straightforwardly extended
to calculate the equation of state of QCD at finite
µB/T , by supplying the B = 0 partial pressure p0(T )
as additional model input. Furthermore, the CEM for-
malism is rather flexible, and the model assumptions
and input can be modified if new and contradicting
lattice data becomes available. 2
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b̂2

�
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,

where Lik(z) is the polylogarithm, b̂k ⌘ bk(T )/bSB
k , and

x± = � b̂2
b̂1

e±µB/T . This analytic form validates the
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Figure 9: Left: Comparison of estimators for the radius of convergence in a Cluster Expansion Model.
Right: The CEM radius of convergence as a function of T predicts the RW-transition at imaginary µB [52].

In [52] a cluster expansion model (CEM) was proposed, which takes the first two coefficients as
input from a lattice calculation [53], and expresses all higher coefficients in terms of these,

bk(T ) = αSB
k

[b2(T )]k−2

[b1(T )]k−1 , k = 3,4, . . . (3.7)

The αSB
k are T -independent and fixed to reproduce the Stefan-Boltzmann limit. Hence, this includes

two-body interactions only, corresponding to NLO in a virial expansion, which should be valid at
sufficiently high temperatures and low densities. Of course, modelling higher coefficients in terms
of the lower ones is not unique, an alternative is provided by the rational function model (RMF)
[54]. The model now predicts the coefficients bk≥3 or any of the baryon number susceptibilities, a
closed expression to all orders as a polylogarithm is also available [44]. All existing lattice data are
reproduced surprisingly accurately, as the examples in Fig. 8 show.

With all coefficients of the fugacity expansion available, one can study the radius of conver-
gence of CEM, Fig. 9. The ratio estimator fails to converge, because of the irregular signs of higher
order coefficients (it works for equal or alternating signs). On the other hand, the Mercer-Roberts
estimator, which uses three consecutive coefficients of a series [55],

rn =

∣∣∣∣∣
cn+1cn−1− c2

n

cn+2cn− c2
n+1

∣∣∣∣∣

1/4

, (3.8)

converges and extrapolates to a unique radius of convergence, independent of the observable used.
Fig. 9 (right) shows the result for various temperatures, which intriguingly predicts the Roberge-
Weiss transition in the direction of imaginary chemical potential. Conversely, this implies that the
CEM has no phase transition for real µB ≤ πT . Of course, this is a model and does not exclude
a QCD critical point in this range. (For an application of the RFM to a chiral model which has a
phase transition, see [54].) However, the analysis does imply that there is no sign of criticality in
the presently available lattice data at zero or imaginary chemical potential (see also Fig. 8 (right)).

A more general study investigates how the singularity structure of QCD is reflected in Lee-
Yang zeroes and the radius of convergence [56]. It concludes that the ratio test fails in any finite
volume and also advocates the Mercer-Roberts as well as the Cauchy-Hadamard estimators. Im-
proved versions are constructed for these estimators with enlarged sensitivity to the closest singu-
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FIG. 9. Continuum extrapolations for the isospin chemi-
cal potential µI,pt corresponding to the pseudo-triple point,
where the chiral crossover line meets the pion condensation
boundary. The orange curve corresponds to the continuum
extrapolation for Nt = 8, 10 and 12 including lattice artefacts
of O(a2) and the gray curve is the continuum extrapolation
for all points including an additional O(a4) term.

FIG. 10. The QCD phase diagram for nonzero isospin chem-
ical potential in the continuum limit. The blue band indicates
the chiral crossover transition temperature Tpc(µI) and the
green line is the boundary µI,c(T ) of the pion condensation
phase (the shaded green area). The yellow point marks the
triple point, beyond which the two transitions are coincident
(see text).

hibit a small downward curvature of the Tpc(µI) line.
The pion condensation boundary remains at µI,c =m⇡�2
within our errors up to T ≈ 140 MeV, beyond which it
soon becomes very flat. For T � 160 MeV, we do not
observe pion condensation up to µI = 120 MeV.

The two transition lines meet at the pseudo-triple
point, for which we obtain µI,pt = 70(5) MeV in the con-
tinuum limit, indicated by the yellow point in Fig. 10.
The corresponding temperature is determined conser-
vatively by taking into account the upper bound for

FIG. 11. Pion and quark condensates as functions of the
temperature for µI = 103 MeV as measured on our Nt = 10
ensembles. The light blue area marks the pion condensation
phase boundary and the orange area indicates the location of
the inflection point of the condensate. The lines connecting
the points are only included to guide the eye.

Tpc(µI = µI,pt) and the lower bound for the temperature
where µI,c = µI,pt. Defining the central value of Tpt as
the midpoint of this interval we obtain Tpt = 151(7)MeV.
From what we observe at finite lattice spacings, we expect
that chiral symmetry restoration and the pion conden-
sation phase boundary coincide from the pseudo-triple
point on. To demonstrate this, in Fig. 11 we plot the
pion condensate together with the quark condensate for
µI > µI,pt. The figure indicates that pion condensation
(defined by the point where ⌃⇡ = 0) occurs together with
chiral symmetry restoration (the inflection point of the
condensate). The initial rise of the chiral condensate in
Fig. 11 is an interesting feature in the pion condensa-
tion phase. A similar tendency has been observed in a
study of the phase diagram of a related two-color NJL
model [52]. We interpret it as a remnant of the relation
between pion and chiral condensate ⌃2

 ̄ 
+ ⌃2

⇡ = 1, dis-
cussed in Sec. II.3, which follows from �PT to leading
order [7].

V.2. Polyakov loop

Next, we elaborate on the properties of the deconfine-
ment transition in terms of the renormalized Polyakov
loop Pr. In contrast to the quark condensate, the
Polyakov loop exhibits no pronounced inflection point.
To capture how deconfinement depends on the isospin
chemical potential, we consider the curves in the µI − T
plane, where Pr = const. is satisfied. Considering our
definition (17) for the renormalization, the contour with
Pr = 1 is a possible choice for the transition temperature.
In addition, the distance between the various contour
lines is related to the slope of Pr around the transition
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sation phase boundary coincide from the pseudo-triple
point on. To demonstrate this, in Fig. 11 we plot the
pion condensate together with the quark condensate for
µI > µI,pt. The figure indicates that pion condensation
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cussed in Sec. II.3, which follows from �PT to leading
order [7].

V.2. Polyakov loop

Next, we elaborate on the properties of the deconfine-
ment transition in terms of the renormalized Polyakov
loop Pr. In contrast to the quark condensate, the
Polyakov loop exhibits no pronounced inflection point.
To capture how deconfinement depends on the isospin
chemical potential, we consider the curves in the µI − T
plane, where Pr = const. is satisfied. Considering our
definition (17) for the renormalization, the contour with
Pr = 1 is a possible choice for the transition temperature.
In addition, the distance between the various contour
lines is related to the slope of Pr around the transition

Finite isospin density

 [Brandt, Endrödi, Schmalzbauer, PRD 18] Staggered action with stout semaring,  
 physical quark masses N⌧ = 6, 8, 10, 12
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QCD at nonzero isospin asymmetry Bastian B. Brandt

Figure 2: Continuum extrapolations for the BEC phase boundary (left panel) and the chiral crossover
transition temperature (right panel). The yellow curves are the continuum extrapolations and the data points
are the ones from the individual lattices which entered the fits. In the left panel, the shaded grey area
represents the region where Sp has been found to be consistent with zero within errors for µI  120 MeV.

Figure 3: Left panel: Pion and quark condensates as functions of T for µI = 103 MeV on the Nt = 10
ensembles. The light blue and orange areas mark the BEC phase boundary and the location of the inflection
point of the condensate, respectively. Right panel: Comparison of the results for Sp at nonzero l to cPT
(dotted grey line) and to the critical behaviour of the O(2) universality class including scaling violations
(dashed yellow line).

for µI,c(T ) and Tpc(µI) by polynomials in (T � T0) (with T0 = 140 MeV) and µ2
I , respectively,

including lattice spacing dependent coefficients. In both cases we found the Nt = 6 lattices to be
outside of the scaling region. The results for the continuum extrapolations are shown in Fig. 2. For
more details see Ref. [14]. The two phase boundaries meet in a pseudo-triple point at µI = µI,pt

and T = Tpt and are on top of each other from that point on. This can be seen from the plot in
the left panel of Fig. 3. The behaviour of Sp and Sȳy with T for µI > µI,pt indicates that pion
condensation and chiral symmetry restoration occur at a similar temperature. A scaling analysis of
Sp , see the right panel of Fig. 3, indicates that the transition to the BEC phase is of 2nd order in the
O(2) universality class, as expected from the symmetry breaking pattern.

Recently we have also determined the BEC phase boundary for µI > 120 MeV [15], in this
region conveniently represented by a critical temperature Tc(µI). The continuum limit has been

3

4

B has unit determinant, we have

detMud = det �[ �D(µI) +mud][ �D(µI) +mud]† + �2� > 0 .
(11)

Thus, both determinants in the measure of the path in-
tegral (5) are positive.

The fourth root of the determinants in (5) is approxi-
mated via rational functions. The simulation setup with
� > 0 was first introduced for the Nf = 2 theory in
the pioneering work of Ref. [24] for the quenched case
and in Ref. [25] for dynamical QCD. The same tech-
nique was also used in Ref. [28]. Here we extend this
setup by including the strange quark as well. In addi-
tion, we improve the lattice action by using the tree-level
Symanzik gauge action and by employing two steps of
stout smearing in the Dirac operator. The quark masses
are tuned to their physical values along the line of con-
stant physics (LCP) mf(�), as determined in Ref. [40],
with the pion mass m⇡ ≈ 135 MeV. Our simulation algo-
rithm is based on Ref. [41]. In addition we implement a
Hasenbusch-type improvement scheme that is typically
used in the context of mass preconditioning [42]. In
our setup this amounts to the replacement detMud(�) =
detMud(⇢) ⋅ detMud(�)�detMud(⇢) with ⇢ > �, which
allows to use a larger step size (and a lower precision) in
the simulation algorithm for the second (more expensive)
factor.

II.3. Observables and renormalization

Our primary observables are the pion condensate and
the quark condensate. Both are obtained from the par-
tition function via differentiation,

�⇡±� = T

V

@ logZ
@�

, � ̄ � = T

V

@ logZ
@mud

. (12)

Inserting the partition function (5) and rewriting the
light quark determinant using Eq. (11), we obtain for
the condensate operators,

⇡± = T

2V
tr

�� �D(µI) +mud�2 + �2
,

 ̄ = T

2V
Re tr

�D(µI) +mud� �D(µI) +mud�2 + �2
.

(13)

The relation (13) allows for direct measurements using
noisy estimators.

The observables of Eq. (12) are subject to additive
renormalization. This is necessary, since logZ contains
ultraviolet divergences in the inverse lattice spacing. The
structure of these divergences can be determined based
on dimensional arguments (see Ref. [43] for a discussion
at µI = � = 0),

logZ ∼ a−4 + (m2
ud + �2)a−2 + (m2

ud + �2)2 log a , (14)

where we suppressed further divergences that contain ms.
Note that the divergences are independent of µI , since
the chemical potential couples to a conserved charge [44].
Thus, it suffices to consider the case of µI = 0. Above in
Eq. (4) we have seen that for vanishing isospin chem-
ical potential, the mass and the pionic source may be
rotated into each other, so that the two parameters can
only appear in Eq. (14) in the form m2

ud +�2. The quark
condensate and the pion condensate inherit the quadratic
and the logarithmic divergences from logZ. However, for�⇡±� these vanish at � = 0 – the point of interest for the
physical theory. Since the light quark mass is nonzero,
the additive divergences remain in � ̄ � and need to be
subtracted even in the limit � → 0. The standard choice
is to consider the difference to � ̄ � measured in the vac-
uum, i.e. at T = µI = 0.

Finally we need to address the multiplicative renor-
malization of our observables. The quark condensate
and the pion condensate have nontrivial renormalization
constants, Z ̄ = Z−1mud

and Z⇡ = Z−1� . The equiva-
lence of mud and � at µI = 0 and the µI -independence
of the renormalization constants, however, imply that
Zmud

= Z�, so that a multiplication of the condensates by
mud cancels the multiplicative divergence.1 Altogether,
the renormalized observables read

⌃ ̄ = mud

m2
⇡f

2
⇡

�� ̄ �
T,µI
− � ̄ �

0,0
� + 1,
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m2
⇡f

2
⇡

�⇡±�T,µI
,

(15)

where we also included a normalization factor involving
the pion mass m⇡ = 135 MeV and the chiral limit of the
pion decay constant f⇡ = 86 MeV and added unity to
the quark condensate for convenience. In this normal-
ization (which follows Ref. [45]), ⌃ ̄ = 1 at T = µI = 0
due to the Gell-Mann-Oakes-Renner relation. In addi-
tion, zero-temperature leading-order �PT [7] predicts a
gradual rotation of the condensates so that ⌃2

 ̄ 
+⌃2

⇡ = 1

holds irrespective of µI , which can also be observed to
some extent in the full theory.

In addition to the fermionic observables we also con-
sider the Polyakov loop,

P = � 1

V
�

nx,ny,nz

Tr
Nt−1�
nt=0 Ut(n)� , (16)

as a measure for deconfinement. The multiplicative
renormalization of P amounts to

Pr(T,µI) = Z ⋅ P (T,µI), Z = � P�
P (T�, µI = 0)�

T��T
,

(17)

1Note that multiplying by � would also result in a renormal-
ization group invariant combination. However, this construction
vanishes in the �→ 0 limit and is therefore not useful.
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B has unit determinant, we have

detMud = det �[ �D(µI) +mud][ �D(µI) +mud]† + �2� > 0 .
(11)

Thus, both determinants in the measure of the path in-
tegral (5) are positive.
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and in Ref. [25] for dynamical QCD. The same tech-
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used in the context of mass preconditioning [42]. In
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the simulation algorithm for the second (more expensive)
factor.

II.3. Observables and renormalization
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@�

, � ̄ � = T

V

@ logZ
@mud

. (12)

Inserting the partition function (5) and rewriting the
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�� �D(µI) +mud�2 + �2
,

 ̄ = T

2V
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�D(µI) +mud� �D(µI) +mud�2 + �2
.

(13)

The relation (13) allows for direct measurements using
noisy estimators.

The observables of Eq. (12) are subject to additive
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Note that the divergences are independent of µI , since
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the additive divergences remain in � ̄ � and need to be
subtracted even in the limit � → 0. The standard choice
is to consider the difference to � ̄ � measured in the vac-
uum, i.e. at T = µI = 0.

Finally we need to address the multiplicative renor-
malization of our observables. The quark condensate
and the pion condensate have nontrivial renormalization
constants, Z ̄ = Z−1mud

and Z⇡ = Z−1� . The equiva-
lence of mud and � at µI = 0 and the µI -independence
of the renormalization constants, however, imply that
Zmud

= Z�, so that a multiplication of the condensates by
mud cancels the multiplicative divergence.1 Altogether,
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where we also included a normalization factor involving
the pion mass m⇡ = 135 MeV and the chiral limit of the
pion decay constant f⇡ = 86 MeV and added unity to
the quark condensate for convenience. In this normal-
ization (which follows Ref. [45]), ⌃ ̄ = 1 at T = µI = 0
due to the Gell-Mann-Oakes-Renner relation. In addi-
tion, zero-temperature leading-order �PT [7] predicts a
gradual rotation of the condensates so that ⌃2
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⇡ = 1

holds irrespective of µI , which can also be observed to
some extent in the full theory.

In addition to the fermionic observables we also con-
sider the Polyakov loop,
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as a measure for deconfinement. The multiplicative
renormalization of P amounts to
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1Note that multiplying by � would also result in a renormal-
ization group invariant combination. However, this construction
vanishes in the �→ 0 limit and is therefore not useful.
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Figure 4: Left panel: Continuum extrapolation of the BEC phase boundary for µI > 120 MeV. The yellow
curve is the continuum extrapolation, the data points are from the individual lattices and the grey band is
the part of the continuum extrapolation for the BEC phase boundary for µI < 120 MeV, entering the fit for
matching purpose. Right panel: QCD phase diagram for nonzero isospin chemical potential in the continuum
limit. Shown are the chiral crossover transition temperature Tpc(µI) (blue band) and the boundary µI,c(T )

(green band) to the BEC phase (shaded grey area). The red point is the pseudo triple point, beyond which
the two transitions coincide.

performed by a fit to the form d1 + d2/µ2
I with a2-dependent coefficients d1 and d2. In the fit we

included data from the continuum extrapolation for µI  120 MeV from Fig. 2 for T < 161 MeV
and 90 MeV  µI  120 MeV, to smoothly connect the two regions of the boundary. The resulting
extrapolation is shown in the left panel of Fig. 4. The updated continuum phase diagram for µI 
325 MeV is shown in the right panel of Fig. 4.

Eventually, we are also interested in a possible crossover to the BCS phase, which we expect
to be related to the deconfinement transition in the BEC phase, as indicated in Fig. 1. First results
on Nt = 6 lattices have been reported in Ref. [14]. A detailed study of the BCS phase and the
deconfinement transition, however, demands large values of µI at smaller temperatures, which we
plan to study in the near future.

4. A test for Taylor expansion

One of the possible methods to overcome the complex action problem is the aforementioned
Taylor expansion method. The key idea is to expand observables around µB = 0, so that the re-
sulting expressions include derivatives at µB = 0 which can be computed in direct simulations. In
practice, only a finite number of expansion coefficients can be computed, so that the series has to
be truncated at that order. The main problem of the method is, that the reliability region of the
truncated series is unknown a priori. A similar expansion can also be performed in µI . For the
isospin density, on which we will focus from now on, the expansion takes the form

hnIi
T 3 = c2

⇣µI

T

⌘
+

c4

6

⇣µI

T

⌘3
+ . . . , (4.1)

where c2 and c4 are the Taylor coefficients of the expansion of the pressure in µI/T (see Ref. [15]
for the details). The Taylor coefficients for our action are available to us from Ref. [19].
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Figure 2: Continuum extrapolations for the BEC phase boundary (left panel) and the chiral crossover
transition temperature (right panel). The yellow curves are the continuum extrapolations and the data points
are the ones from the individual lattices which entered the fits. In the left panel, the shaded grey area
represents the region where Sp has been found to be consistent with zero within errors for µI  120 MeV.

Figure 3: Left panel: Pion and quark condensates as functions of T for µI = 103 MeV on the Nt = 10
ensembles. The light blue and orange areas mark the BEC phase boundary and the location of the inflection
point of the condensate, respectively. Right panel: Comparison of the results for Sp at nonzero l to cPT
(dotted grey line) and to the critical behaviour of the O(2) universality class including scaling violations
(dashed yellow line).

for µI,c(T ) and Tpc(µI) by polynomials in (T � T0) (with T0 = 140 MeV) and µ2
I , respectively,

including lattice spacing dependent coefficients. In both cases we found the Nt = 6 lattices to be
outside of the scaling region. The results for the continuum extrapolations are shown in Fig. 2. For
more details see Ref. [14]. The two phase boundaries meet in a pseudo-triple point at µI = µI,pt

and T = Tpt and are on top of each other from that point on. This can be seen from the plot in
the left panel of Fig. 3. The behaviour of Sp and Sȳy with T for µI > µI,pt indicates that pion
condensation and chiral symmetry restoration occur at a similar temperature. A scaling analysis of
Sp , see the right panel of Fig. 3, indicates that the transition to the BEC phase is of 2nd order in the
O(2) universality class, as expected from the symmetry breaking pattern.

Recently we have also determined the BEC phase boundary for µI > 120 MeV [15], in this
region conveniently represented by a critical temperature Tc(µI). The continuum limit has been
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Figure 10: Left: Chiral and isospin condensated as a function of T . Middle: Phase diagram at finite isospin
chemical potential. Right: Scaling of the pion condensate as a signal for a second-order transition [63].

larity, which are able to pick up the known phase transition of N f = 4 staggered QCD on a Nτ = 4
lattice with less than ten coefficients.

Having to go term by term in an expansion can be avoided, if the Lee-Yang zero closest to the
origin can be determined directly. Using reweighting, this was the strategy employed in the first
prediction of a critical point on Nτ = 4 lattices using unimproved rooted staggered fermions [57].
However, a new investigation points out that, for this discretisation, the closest Lee-Yang zero is
caused by a spectral gap between the unrooted tastes rather than by a phase transition [58]. A new
definition of the rooted staggered determinant at finite µ is suggested, which avoids these artificial
non-analyticies. Application to the stout-smeared action on Nτ = 4, again using reweighting, shows
the closest singularity to be off the real axis, pushing a possible phase transition beyond µB>∼2T .

3.4 Finite isospin density

It was noted long ago that QCD at finite isospin density does not have a sign problem and can
be simulated directly [59]. Finite isospin is also physically relevant for neutron stars or the early
universe with a lepton asymmetry. Consider the (degenerate) light quark action in the form

S = ψ̄
(
γµ(∂µ + iAµ)+mud +µIγ4τ3 + iλγ5τ2

)
ψ , µI = (µu−µd)/2 . (3.9)

A chemical potential for isospsin is realised by having chemical potentials of opposite sign for
the u- and d-quarks. For µI = 0, the action is invariant under a SU(2)V ×U(1)V associated with
isospin and baryon number, which gets broken to U(1)τ3 ×U(1)V by µI 6= 0. In this case there
is a further spontaneous symmety breaking leaving only the baryon U(1)V , signalled by a non-
vanishing expectation value for the charged pions,

〈π±〉= 〈ψ̄γ5τ1,2ψ〉 , (3.10)

which then correspond to Goldstone modes. The λ -term in the action introduces an explicit break-
ing of the remaining symmetry and is necessary for simulation purposes only, in order to pick one
of the degenerate vacua. For physical results, simulations have to be extrapolated to λ → 0, a task
quite similar to approaching the chiral limit at µ = 0, and hence difficult.

After several exploratory studies (e.g. [60, 61, 62]) new calculations are for N f = 2+1 quarks
with physical masses using a stout-smeared staggered action, on lattices with Nτ = 6,8,10,12,
followed by a continuum extrapolation. The λ → 0 extrapolation is done with a similar reweight-
ing technique applied to a singular value representation of the pion condensate, as for the chiral
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Figure 11: Left: Heavy mass corner of the Columbia plot, computed in an effective theory [68]. Right:
Schematic phase diagram for QCD with heavy quarks.

condensate mentioned in section 2.3 [18]. The order parameters used to characterise the phase
structure are the chiral and pion condensates,

Σπ =
mud

m2
π f 2

π
〈π±〉 , Σψ̄ψ =

mud

m2
π f 2

π
(〈ψ̄ψ〉T,µI −〈ψ̄ψ〉0,0)+1 , (3.11)

which are shown as a function of T for a specific choice of µI in Fig. 10 (left). Varying both ther-
modynamic parameters, the phase boundaries have been mapped out leading to the phase diagram
in Fig. 10 (middle). For the transition in the µI-direction, the extrapolation λ → 0 is consistent
with O(2) scaling of the pion condensate, identifying the transition to be second-order. Prospects
to reweight in µB using finite isospin as a point of departure are discussed in [64].

4. Larger baryon density via effective lattice theories

For the cold and dense regime, µB/T � 1, where the sign problem is strongest, no genuine
methods are available. Nevertheless, some progress towards at least qualitative physics has been
made over the last few years by means of effective theories. The general idea is to split the problem
in two parts: first derive an effective theory by expansion methods in some small parameter. By
this step some degrees of freedom have already been integrated over, such that the sign problem for
the resulting effective theory is milder than the original one. In a second step the effective theory
is solved by flux representations simulated by a worm algorithm, complex Langevin simulations or
analytic series expansion methods.

Two types of effective degrees of freedom arise naturally, depending on the integration order,

Z =
∫

DUDψ̄Dψ e−SQCD[U,ψ̄,ψ] =
∫

DU0 e−Se f f [U0] =
∫

Dψ̄Dψ e−Se f f [ψ̄,ψ] . (4.1)

In the first case, fermions are integrated over as well as all spatial link variables, leaving a theory of
temporal links only, which on a periodic lattice can be expressed by Polyakov loops. In the second
case, all gauge links are integrated, leaving a fermionic effective theory in terms of mesons and
baryons, because of gauge invariance. Note that both representations are perfectly equivalent to
QCD. Because of the truncations involved in doing the integrations analytically, this equivalence is
reduced to specific parameter regions, where the approximations hold.
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Figure 12. Quark number susceptibility for κ = 0.12 and β = 5.7 and Nτ = 500 (left) and

Nτ = 250. The divergence with volume signals a true phase transition, whereas saturation

at a finite value implies a smooth crossover.

5.4 Nuclear liquid gas transition for light quarks

As in our previous work [10], the accessible quark masses in the convergence region

of the effective theory are too high to realise the expected first order transition for

the onset of nuclear matter. Finite size scaling analyses reveal the transition to be a

smooth crossover, in accord with the interplay between accessible temperatures and

the values of the binding energies. Of course it is highly interesting to see whether

the effective theory includes the expected physics features when the quark mass is

lowered. We now consider κ = 0.12, corresponding to a small quark mass, and

very low temperatures parametrised by Nτ ∼ O(103). We stress that this choice of

parameters is far outside the convergence region of our κ4-action, cf. figure 7. In

other words, there is no reason to expect the results to accurately represent QCD

and an attempt at a continuum extrapolation makes no sense. Nevertheless, this is

an interesting check of the qualitative features of the effective theory.

Figure 11 shows distributions of the Polyakov loop in the onset transition region

for three choices of Nτ , corresponding to increasing temperatures from left to right.

We clearly observe the coexistence of two phases at the lowest temperatures, which

– 26 –

23

Figure 12: Left: Onset of baryon number (crossover) for heavy quarks and different lattice spacings [72].
Right: First-order onset transition for light quarks [71].

4.1 Effective theory for heavy quarks

The representation of QCD in terms of Polyakov loops was developed to characterise the ther-
mal transition in pure gauge theories [65, 66] and has been extended to include fermions. Starting
point is Wilson’s lattice formulation. The effective theory is then derived by a combined expan-
sion in the fundamental character coefficient, which is a known function of the gauge coupling and
always smaller than one for finite β , and the hopping parameter,

u(β ) =
β
18

+
β 2

216
+ . . . < 1 ,

1
8
<

(
κ =

1
2am+8

)
<

1
4
. (4.2)

With the euclidean time extent now absorbed in the remaining temporal Wilson line variables W (x),
the result is an effectively 3d theory resembling a continuous spin model [67, 68],

Z =
∫

DW ∏
<x,y>

[
1+λ (LxL∗y +L∗xLy)

]
(4.3)

×∏
x
[1+h1Lx +h2

1L∗x +h3
1]

2N f [1+ h̄1L∗x + h̄2
1Lx + h̄3

1]
2N f

× ∏
<x,y>

(
1−h2Tr

h1Wx

1+h1Wx
Tr

h1Wy

1+h1Wy

)(
1−h2Tr

h̄1W †
x

1+ h̄1W †
x

Tr
h̄1W †

y

1+ h̄1W †
y

)
× . . . .

The couplings of the effective theory, λ (u,κ,Nτ),h1(u,κ,µ,Nτ), h̄1(µ) = h1(−µ),h2(u,κ,Nτ) are
(resummed) power series in the original small parameters, and can thus in turn be treated as small
expansion parameters for the effective theory. This is illustrated in [69], where the critical coupling
for the SU(3) pure gauge theory is extracted from the effective theory by means of series expansion
methods. Comparison with the full 4d Monte Carlo result shows agreement to better than 10%
for Nτ ∈ [2,16], for which continuum extrapolations are possible, thus constituting a completely
analytic calculation of the deconfinement transition of lattice Yang-Mills theory.

When quarks are included, the heavy mass corner of the Columia plot has been simulated
by means of the effective theory. On coarse Nτ = 4 lattices, the critical line found in full QCD
simulations at µ = 0 is again accurately reproduced, and the calculation can be extended to finite
µ simulating a flux representation [68]. In this way the deconfinement critical surface is known for
any value of µ , Fig. 11 (left), and the phase diagram for heavy quarks looks like Fig. 11 (right).
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Figure 13: Left: Phase diagram for QCD with Nc → ∞ [73]. Middle: The onset transition becomes first
order for large Nc. Right: p∼ Nc for large Nc in the baryon condensed region [75].

With the same methods, the cold and dense regime can also be studied and, in particular,
the onset transition to condensing baryon matter has been seen explicitly to various orders in the
expansions [70, 71, 72]. Fig. 12 (left) shows the baryon density, featuring the “silver blaze prop-
erty” of staying zero until µB ≈ mB, followed by a sudden rise to lattice saturation, which is the
maximal number of quarks per lattice site allowed by the Pauli principle. In continuum units, this
lattice artefact moves to infinity by continuum extrapolation, as the figure illustrates. Fig. 12 (left)
shows a crossover, whereas for light quarks simulations show a first-order transition Fig. 12 (right)
changing to crossover at an endpoint Tc(m). Indeed, the binding energy per baryon in the hopping
expansion is found to start as ε ∼ κ2 [71], i.e. it decreases with growing quark mass to zero in the
static limit, as one also expects from Yukawa potentials in nuclear physics. Hence, the end point of
the nuclear liquid gas transition, Tc(m), decreases with mass.

4.2 Large Nc

In yet another corner of QCD parameter space, interesting conjectures concerning the QCD
phase structure were based on large Nc arguments [73]. In particular, the phase diagram in the
large Nc limit was argued to look as in Fig. 13 (left). With fermion contributions suppressed, the
deconfinement transition is a straight line separating the plasma phase, where the pressure scales
as p ∼ N2

c , from the hadron gas phase, where it scales as p ∼ N0
c . In [73] it is argued that at finite

density there should then be a third phase with p∼Nc, which was termed quarkyonic since it shows
aspects of both baryon and quark matter. In particular, the fermi sea at low temperatures is argued
to be composed of a baryonic shell of thickness ∼ ΛQCD, and quark matter inside.

The effective theory of the previous section can be derived for a general number of colours [74].
For large Nc, the baryon mass is mB ∼ Nc, so the constituent quark mass should not matter and the
cold and dense region for large Nc is accessible to direct calculation [75]. It was found that the
baryon onset transition steepens with Nc, to become first-order in the large Nc limit, Fig. 13 (mid-
dle). Furthermore, through three orders in the hopping expansion, the pressure scales as p ∼ Nc,
suggesting this to be a property to all orders. This scaling is reproduced with a leading correction
even for Nc = 3− 9, right after the onset transition Fig. 13 (right). The large Nc phase diagram
Fig. 13 (left) is thus continuously obtained from Fig. 11 (right) by increasing Nc. Note also, that a
lattice filling with baryon number smoothly changes from baryon matter (at the onset of conden-
sation) to quark matter (at saturation) as a function of µB, which is consistent with the picture of
quarkyonic matter. For light quarks, there may be in addition a chiral transition.
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Figure 14: Left: Chiral phase transition and onset transition to baryon condensation for m = 0 [82].
Right: Mass dependence of the chiral and baryon onset transition in the strong coupling limit [83].

4.3 Effective theory for light quarks

In this case the starting point is the lattice action with staggered fermions. After a strong
coupling expansion in powers of β , the gauge integration is done to leave a fermionic theory,

Z =
∫

Dψ̄DψDU e−Sg[U ]−S f [U,ψ̄,ψ] =
∫

Dψ̄Dψ Z f 〈e−Sg[U ]〉Z f , (4.4)

Z f =
∫

DU e−S f [U,ψ̄,ψ] , 〈e−Sg[U ]〉Z f = 1+ 〈Sg[U ]〉Z f +O(β 2) .

Early mean field [76] and Monte Carlo [77] studies based on a polymer representation have been
restricted to the strong coupling limit, β = 0. More recent simulations are done with a worm
algorithm [79]. Note that anisotropic lattices are necessary for β = 0 in order to tune temperature.

After integrating over the fermions also, one arrives at a dual formulation in terms of monomers,
dimers, world lines and world sheets, which for isotropic lattices reads [80, 81],

Z(mq,µ) = ∑
{k,n,l,np}

∏
b=(x,ν)

(Nc− kb)!
Nc!(kb−| fb|)!

︸ ︷︷ ︸
meson hoppings

∏
x

Nc!
nx!

(2amq)
nx

︸ ︷︷ ︸
chiral condensate

∏
l3

w(l3,µ)∏
l f

w̃(l f ,µ)

︸ ︷︷ ︸
baryon hoppings

∏
p

( β
2Nc

)np+n̄p

np!n̄p!
︸ ︷︷ ︸

gluon propagation

.

Note that this formulation in general also contains negative weights, but the resulting sign problem
is mild enough to be handled by reweighting techniques. A particular advantage of this formula-
tion is the feasibility to simulate the chiral limit as well as finite mass, a drawback is that gauge
corrections are more difficult to include.

Fig. 14 (left) shows the phase diagram for the chiral limit, both for β = 0 and with leading
linear gauge corrections included [82]. As expected, there always is a non-analytic chiral phase
transition, with a tricritical point where the first-order transition at finite density meets the second-
order line. In the strong coupling limit, this tricritical point coincides with the end point of the
nuclear liquid gas transition. When gauge corrections are switched on, these start splitting up,
but surprisingly the first-order lines of the chiral and nuclear transitions are still indistinguishably
close. Fig. 14 (right) shows the strong coupling limit, but now with finite quark mass switched on.
The second-order transition line changes to crossover, as expected. Note the decreasing Tc(m) of
the end point, which is in qualitative agreement with the finding for heavy quarks. The end point
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Putting it all together…what can we conclude?
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Not very tight yet…….but everything the lattice sees up to now fits into one picture:
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µB
<latexit sha1_base64="7kI7CY/VO4ds7qQI/5JMWNRiBIw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMdSLx4rmLbQhrLZbtqlu5uwuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vZv73SeqNIvlo8kSGgg8lixiBBsr+QORDlvDas2tuwugdeIVpAYF2sPq12AUk1RQaQjHWvc9NzFBjpVhhNNZZZBqmmAyxWPat1RiQXWQL46doQurjFAUK1vSoIX6eyLHQutMhLZTYDPRq95c/M/rpya6DXImk9RQSZaLopQjE6P552jEFCWGZ5Zgopi9FZEJVpgYm0/FhuCtvrxOOo26d1VvPFzXmq0ijjKcwTlcggc30IR7aIMPBBg8wyu8OdJ5cd6dj2VrySlmTuEPnM8fn2yOjw==</latexit>

T<latexit sha1_base64="wuUeoCr40AnIpr753sXMM0828Vs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukVSl7V+VK/bpUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPsPeM3A==</latexit> T = 0
<latexit sha1_base64="n7JRzpv4tCkLhmqZbqQ6UCGHPns=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHiHlBsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rGsm3GCfkQHkoecUWOlx/qN2yuW3LI7B1klXkZKkKHWK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3Ua48XJaqt1kceTiBUzgHD66gCvdQgwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBoOmNXQ==</latexit>

µI
<latexit sha1_base64="d9Q0wU4mkGZJFEk4tZ4kWUiCXXM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF71VMG2hDWWz3bRLdzdhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhQln2rjut1NaW9/Y3CpvV3Z29/YPqodHbR2nilCfxDxW3RBrypmkvmGG026iKBYhp51wcjvzO09UaRbLR5MlNBB4JFnECDZW8vsiHdwPqjW37s6BVolXkBoUaA2qX/1hTFJBpSEca93z3MQEOVaGEU6nlX6qaYLJBI9oz1KJBdVBPj92is6sMkRRrGxJg+bq74kcC60zEdpOgc1YL3sz8T+vl5roOsiZTFJDJVksilKOTIxmn6MhU5QYnlmCiWL2VkTGWGFibD4VG4K3/PIqaTfq3kW98XBZa94UcZThBE7hHDy4gibcQQt8IMDgGV7hzZHOi/PufCxaS04xcwx/4Hz+AKoIjpY=</latexit>

?

?
?

?

mB
<latexit sha1_base64="oQIahf4GGJ0k6sJL55aNSutYM9w=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHEi8eI5gHJEmYns8mQeSwzs0JY8glePCji1S/y5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKfloJwkNBR5KFjOCrZMeRL/eL5X9ij8HWiVBTsqQo9EvffUGiqSCSks4NqYb+IkNM6wtI5xOi73U0ASTMR7SrqMSC2rCbH7qFJ07ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxTZgxmaSWSrJYFKccWYVmf6MB05RYPnEEE83crYiMsMbEunSKLoRg+eVV0qpWgstK9f6qXKvncRTgFM7gAgK4hhrcQQOaQGAIz/AKbx73Xrx372PRuublMyfwB97nDxYAjao=</latexit>

mB
<latexit sha1_base64="oQIahf4GGJ0k6sJL55aNSutYM9w=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHEi8eI5gHJEmYns8mQeSwzs0JY8glePCji1S/y5t84SfagiQUNRVU33V1Rwpmxvv/tra1vbG5tF3aKu3v7B4elo+OWUakmtEkUV7oTYUM5k7RpmeW0k2iKRcRpOxrfzvz2E9WGKfloJwkNBR5KFjOCrZMeRL/eL5X9ij8HWiVBTsqQo9EvffUGiqSCSks4NqYb+IkNM6wtI5xOi73U0ASTMR7SrqMSC2rCbH7qFJ07ZYBipV1Ji+bq74kMC2MmInKdAtuRWfZm4n9eN7XxTZgxmaSWSrJYFKccWYVmf6MB05RYPnEEE83crYiMsMbEunSKLoRg+eVV0qpWgstK9f6qXKvncRTgFM7gAgK4hhrcQQOaQGAIz/AKbx73Xrx372PRuublMyfwB97nDxYAjao=</latexit>

m⇡/2
<latexit sha1_base64="kd8dlXMRS8fqzWTFIme7vp9iqUU=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU92tgh6LXjxWsB/QLiWbZtvQJBuSrFCW/ggvHhTx6u/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61TJJqQpsk4YnuRNhQziRtWmY57ShNsYg4bUfju5nffqLasEQ+2omiocBDyWJGsHVSW/R7il3U+uWKX/XnQKskyEkFcjT65a/eICGpoNISjo3pBr6yYYa1ZYTTaamXGqowGeMh7ToqsaAmzObnTtGZUwYoTrQradFc/T2RYWHMRESuU2A7MsveTPzP66Y2vgkzJlVqqSSLRXHKkU3Q7Hc0YJoSyyeOYKKZuxWREdaYWJdQyYUQLL+8Slq1anBZrT1cVeq3eRxFOIFTOIcArqEO99CAJhAYwzO8wpunvBfv3ftYtBa8fOYY/sD7/AG0C48m</latexit>

Not very tight yet…….but everything the lattice sees up to now fits into one picture:
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Figure 15: Phase diagram with only those qualitative features, which are seen in lattice simulations so far.

quickly moves to µB>∼3T , which is again consistent with all previously reported results. First
simulations including both, gauge corrections as well as finite mass, are also available [84]. Note
also that, in the continuum, this effective theory represents N f = 4 QCD if no rooting is applied.

5. Conclusions

Because direct simulations are impossible, determining the nature of the QCD transition in
the chiral limit as well as at finite baryon density remains extraordinarily difficult. Nevertheless,
systematic studies of QCD transitions in accessible regions of parameter space are beginning to
constrain the possible phase diagram. In particular, the strength of the chiral transition weakens
with decreasing N f and with decreasing lattice spacing. For the chiral limit with N f = 2 and
surprisingly also for N f = 3, this implies either a second-order transition, or a first-order transition
disappearing at excessively small quark masses. The chiral transition also weakens, at least initially,
when a real baryon chemical potential is switched on. For physical quark masses, there is no
conclusive sign of criticality from the lattice for µB<∼3T . This is consistent with recent Dyson-
Schwinger [85] and functional renormalisation group [86] results, which predict a critical point in
the range µB/T ≈ 4−6, with however still uncertain systematics in that chemical potential range.

The cold and dense regime µB/T � 1, progress is being made with analytically derived effec-
tive lattice theories, which represent QCD in complementary parameter regions with either heavy
quarks or at strong coupling. They unambiguously show the silver blaze behaviour at T = 0, fol-
lowed by a first-order transition to baryon condensation with a critical end point, which for physical
parameter values will represent the nuclear liquid gas transition. At finite isospin chemical poten-
tial and low temperatures, a second-order transition to a pion condensed phase is seen for physical
quark masses and in the continuum. These features are indicated in the phase diagram Fig. 15.

Other developments concern the physical degrees of freedom near the thermal transition. An
emergent chiral spin symmetry in the temperature range from the crossover to ∼ 1 GeV suggests
light quarks still bound by colour-electric strings, and the symmetry gets amplified by baryon
chemical potential. At low temperatures, there is the onset transition to baryon matter, which
smoothly turns into a quarkyonic regime (defined by p ∼ Nc) that, at least in principle, allows a
continuous interpolation from baryon matter to quark matter. The band in the phase diagram Fig. 15
thus indicates a region, where the dynamics changes very gradually and the degrees of freedom still
resemble the hadronic ones. In conclusion, the lattice is beginning to see some structure in the QCD
phase diagram. Intriguingly, a non-analytic chiral phase transition is neither required nor ruled out
by lattice data at this stage, and remains an exciting subject of research.
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