PROCEEDINGS

OF SCIENCE

Lattice QCD package GWU-code and QUDA with HIP

Yu-Jiang Bi*f
Institute of High energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Yi Xiao
The Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
E-mail: 1ouisxcode@gmail.com

Wei-Yi Guo

Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
Ming Gong

Institute of High energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Peng Sun
Nanjing Normal University, Nanjing, Jiangsu, 210023, China
E-mail: 06260@njnu.edu.cn

Shun Xu

Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

Yi-Bo Yang

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy
of Sciences, Beijing 100190, China

E-mail: ybyang@itp.ac.cn

The open source HIP platform for GPU computing provides an uniform framework to support
both the NVIDIA and AMD GPUs, and also the possibility to porting the CUDA code to the HIP-
compatible one. We present the porting progress on the Overlap fermion inverter (GWU-code)
and also the general Lattice QCD inverter package - QUDA. The manual of using QUDA on HIP
and also the tips of porting general CUDA code into the HIP framework are also provided.

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

*Speaker.

This work is supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant
No. XDC01040100) and the National Key Research and Development Program of China (No. 2017YFB0203200). M.
Gong is supported in part by the National Science Foundation of China (NSFC) under the project No. 11775229, P. Sun
is supported by Natural Science Foundation of China under grant No. 11975127, Y. Yang is supported in part by Chinese
Academy of Science CAS Pioneer Hundred Talents Program.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:louisxcode@gmail.com
mailto:06260@njnu.edu.cn
mailto:ybyang@itp.ac.cn

latticeQCD with HIP Yu-Jiang Bi

1. Introduction and background

The engineering and energy efficiency constraints push the modern supercomputer architec-
ture to the multi-level parallelism, and heterogeneous computing architectures such as CPU+GPU
are widely used in top500 supercomputers, including the most recent fastest two, Summit and
Sierra. Most of the performance on such a computer come from the Nvidia GPU V100, and an
efficient code is essential to benefit the related Lattice QCD calculation from those machines.
There are already quite a few package can support the Nvidia GPU code platform CUDA with
good performance and also multi-GPU scaling, including QUDA (for most of the fermion ac-
tions) [1, 2, 3], GRID (for the domain wall fermion and etc.) [4], GWU-code (for the overlap and
clover fermion) [5, 6], and so on.

On the other hand, the efficient code on the AMD GPU falls behind except some effects with
OpenCL (e.g., CL2QCD [7]), while the peak performance of the AMD GPU have caught up and
the E-flops supercomputer “Frontier" with AMD GPU will be built in US by 2021. In recent years,
an open source HIP platform is promoted to support both the Nvidia and AMD GPUs, which also
provide the possibility to porting the CUDA codes to the HIP platform. Based on this, writing
the code from scratch and implementing hundreds features needed by the lattice QCD calculation,
would be avoid by porting the existed CUDA codes. In this proceeding, we will present our finding
on using the package GWU-code and QUDA on the AMD GPU through the HIP platform, with a
summary on the known issues.

2. Porting tips and compiling manual of QUDA

Generally, the porting can be separated into 3 stages, convert the code with hipify-perl, patch
the codes manually to satisfy the requirement of compiler, replace the unsupported features to avoid
the runtime crash. Let us taking the porting of QUDA as example:

1). Convert the code with hipify-perl. The hipify-perl is a perl script to map the name of the
CUDA functions to that of their HIP counterpart, and also the CUDA head files. If the script meets
some unknown words starting with "cu", message “warning:... : unsupported device function" will
be thrown out, while the conversion will continue.

2). Patch the codes manually to satisfy the requirement of compiler. Currently, QUDA is
compiled by hip-clang, instead of HCC (Heterogeneous Compute Compiler). HCC is HC compiler,
which is C ++ AMP syntax language with HSA Extend [8]. HCC will translate HIP kernel syntax
into C ++ AMP syntax by using functional or macro grid launch, while certain QUDA device
function used complicated class and template will cause syntax or runtime error. In the other
hand, hip-clang is a hip kernel syntax supported LLVM frontend as shown in Fig. 1. By setting
the environment variable HIP_ PLATFORM to clang, hip-clang will take over the compiling and
compile CUDA-like syntax source code to LLVM IR directly [9], and then the AMD GPU backend
of LLVM will compile the LLVM IR to binary. The patches we applied include:

2.1) Set CMAKE_CXX_SYSROOT_FLAG_CODE to add the .cu suffix to the
CMAKE_CXX_SOURCE_FILE_EXTENSIONS, and then use hip-clang to compile both the .cpp
and .cu files. Note that the flag “-g" should be avoid and “-_STRICT_ASNI_ -O3" is necessary

latticeQCD with HIP Yu-Jiang Bi

(HIP Source Code
+ hee I

Frontend HC Source Code
|

clang

v

LLVM IR
v
AMDGPU

v

q Binary

Y

Backend

Figure 1: HIPCC Compilation Process. The clang compiler skips the step to generate the HC source code.

to make the code works well. Compile clover_deriv_quda.cu and gauge_stout.cu will crash the
compiler and add the flag "-fno-inline" would be a choice to avoid it.

2.2) Fix the functions with different prototype, likes hipGetErrorString, hipGetErrorName,
hipPointerGetAttributes, hipMemcpyHtoDAsync and etc. At the same time, some of the functions
likes blasCgetrfBatched and blasCgetriBatched are replaced with the CPU version.

2.3) Add the __host__ flags in front of the __device __ functions which used in the CPU code.

2.4) Rewrite the ptx code into the normal C++ codes.

2.5) Move the declare of the shared memory into the body of the functions, as it can not be
located in the link stage.

3). Replace the unsupported features to avoid the runtime crash. The major changes include:

3.2) Suppose the memoryType is host if hipPointerGetAttributes return an error, and comment
out checkCudaError() in the constructors;

3.3) Limited the maximum threads used in the tuning to 512 or even smaller number, if certain
function crashes on the AMD GPU with more threads.

3.4) Use the global function to copy the constant array needed by multi_blas_kernel to the
global memory, as the function hipmemcpyToSymbol doesn’t work correctly:

__global__ void set_Amatix(signed char =*ref) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx>=MAX MATRIX_ SIZE)
return;
Amatrix_d[idx]=ref[idx];

signed char *A_d;

hipMalloc (&A_d, MAX_MATRIX_SIZE);

hipMemcpy (A_d, A, MAX MATRIX_SIZE, hipMemcpyHostToDevice) ;
set_Amatix<<<256,MAX_MATRIX_SIZE/256>>>(A_d);
hipDeviceSynchronize () ;hipFree (A_d);

latticeQCD with HIP Yu-Jiang Bi

Module name Ported | Tested
QUDA_DIRAC_WILSON yes yes
QUDA_DIRAC_CLOVER yes yes
QUDA_CONTRACT yes yes
QUDA_COVDEV yes yes
QUDA_DIRAC_STAGGERED yes no
QUDA_FORCE_GAUGE yes no
QUDA_DIRAC_DOMAIN_WALL no no
QUDA_DIRAC_TWISTED_MASS no no
QUDA_DIRAC_TWISTED_CLOVER no no
QUDA_DIRAC_CLOVER_HASENBUSCH no no
QUDA_DIRAC_NDEG_TWISTED_MASS no no
QUDA_LINK_ASQTAD no no
QUDA_LINK_HISQ no no
QUDA_FORCE_HISQ no no
QUDA_GAUGE_TOOLS no no
QUDA_GAUGE_ALG no no
QUDA_DYNAMIC_CLOVER no no

Table 1: Summary of the porting progress in term of QUDA build options. All the parts needed for a
Multigrid inverter of the Clover fermion have been done.

3.5) In the function multiblas, multireduce and ComputeVUYV, pass the parameters though the
argument class of the global function likes

__global__ func(Arg arg){...}

can make the performance to be extremely low. Such a problem can be avoid by copying the
argument class to the GPU memory first, and use the its reference as the argument:

__global___ func(Arg &arg){...}

Arg xarg_d;

hipMalloc (&arg_d, sizeof (Arg));

hipMemcpy (arg_d, &arg, sizeof (Arg) , hipMemcpyHostToDevice) ;
func (xarg_d) ;

hipDeviceSynchronize () ;

hipFree (arg_d);

Other minor hacks can be found in the present branch on the github:
https://github.com/lattice/quda/tree/rocm-devel.

The present code merged the recent released QUDA 1.0.0. In term of the QUDA build options,
the porting progress are listed in Table 1.

latticeQCD with HIP Yu-Jiang Bi

Peak FP32 (TFlops) | Bandwidth (TB) | GWU-code (TFlops) | QUDA (TFlops)

Nvidia V100 14.7 0.9 0.80 1.11

AMD MI60 14 (for PCle) up to 1.0 0.54 0.48

Table 2: The single precision peak performance and memory bandwidth of V100 and MI60, v.s. the D-slash
performances using the GWU-code and QUDA with the same single precision. The SU(3) is suppressed to
12 real numbers in both the GWU-code and QUDA cases to save the memory bandwidth. Note that the tests
on V100 uses CUDA, not HIP.

3. GWU-code case

Comparing to QUDA, porting GWU-code is much simpler. GWU-code use the macro to
generate the D-slash GPU kernel without any device functions, and implement the vector operator
on GPU with the CUDA Thrust [5, 6]. Thus one just need to replace the Thrust library with the
rocthrust after the code has been converted with hipify-perl. The function thrust::reduce can be
very slow with double precision in certain version, but it can be replaced by the other functions
with normal performance.

4. Performance and issues

Our test is based on AMD MI60 GPU and Nvidia V100 GPU. The D-slash performance is
summarized in Table 2. The QUDA dslash performance is somehow lower as this kernel is much
more complicated and then can not be fully optimized with hip-clang at present.

As the practical application of QUDA, the multigrid inverter works correctly while the perfor-
mance is not very permising. With the largest 96 x 192 lattice we tested, the total performance
with 324 MI60 GPUs is around 10 TFlops, using a 3-level multigrid layouts (4,4,4,4) and (2,2,2,2).

In the GWU-code side, 200 pairs of the Overlap eigensystem of the HYP smeared 24° x 64
RBC configuration at a=0.11fm can be generated with 4 MI60 GPU in 4 hours, and the similar
calculation with E5-2698v3 at 2.3 GHz requires 1024 cores for 2 hours. The test with larger size is
in progress.

5. Summary

In summary, we port two Lattice QCD CUDA packages, GWU-code and QUDA to the AMD
GPU platform using HIP. The performance is around half of that on the CUDA when the memory
bandwidth of them are similar. The multigrid inverter of QUDA works correctly with the lattice as
large as 96° x 192, and the overlap eigensystem can be generated correctly with GWU-code. We
will try to optimize the performance and scaling in the further study. All the present test using HIP
are done on AMD GPUs, that on Nvidia GPUs will be also investigated.

References

[1] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi. Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs. Comput. Phys. Commun., 181:1517-1528, 2010.

latticeQCD with HIP Yu-Jiang Bi

(2]

(3]

[4]

(5]

(6]

[7]

(8]
[9]

R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, and S. Gottlieb. Scaling Lattice QCD beyond
100 GPUs. In SC11 International Conference for High Performance Computing, Networking, Storage
and Analysis Seattle, Washington, November 12-18, 2011, 2011.

M. A. Clark, Blint Jo, Alexei Strelchenko, Michael Cheng, Arjun Gambhir, and Richard Brower.
Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization. 2016.

Peter Boyle, Azusa Yamaguchi, Guido Cossu, and Antonin Portelli. Grid: A next generation data
parallel C++ QCD library. 2015.

A. Alexandru, C. Pelissier, B. Gamari, and F. Lee. Multi-mass solvers for lattice QCD on GPUs. J.
Comput. Phys., 231:1866—1878, 2012.

Andrei Alexandru, Michael Lujan, Craig Pelissier, Ben Gamari, and Frank X. Lee. Efficient
implementation of the overlap operator on multi-GPUs. In Proceedings, 2011 Symposium on
Application Accelerators in High-Performance Computing (SAAHPC’11): Knoxville, Tennessee, July
19-20, 2011, pages 123-130, 2011.

Owe Philipsen, Christopher Pinke, Alessandro Sciarra, and Matthias Bach. CL?QCD - Lattice QCD
based on OpenCL. PoS, LATTICE2014:038, 2014.

http://www.hsafoundation.com/standards/.

J Wu, A Belevich, and E Bendersky. an open-source gpgpu compiler. Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM, 2016: 105-116., 2016.

