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We discuss leading isospin-breaking effects in the hadronic vacuum polarisation required for the
investigation of the hadronic contribution to (g−2)µ . The calculation proceeds by expanding the
relevant correlation functions around the isosymmetric limit. Isosymmetric observables are eval-
uated on gauge ensembles with N f = 2+1, O(a) improved Wilson fermions and open boundary
conditions generated by the CLS effort. Particular emphasis is placed on the relevant quark-
disconnected diagrams required for a complete treatment of leading isospin-breaking effects in
the valence quark sector. We provide a detailed discussion of the renormalisation of the vector
current in QCD+QED taking operator mixing into account.
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1. Introduction

In this work we continue the investigation of isospin-breaking effects making use of Coor-
dinated Lattice Simulations (CLS) Nf = 2+ 1 QCD ensembles [1, 2] with open boundary condi-
tions [3] first covered in [4]. For a previous account of our effort based on Nf = 2 QCD ensembles
with (anti-)periodic boundaries conditions see [5]. We follow the ROME123 approach [6, 7] which
treats isospin-breaking effects perturbatively. It is desirable to calculate hadronic corrections to
high-precision observables such as the anomalous magnetic moment of the muon with high accu-
racy as it provides intriguing hints for the possible existence of new physics. We therefore inves-
tigate the hadronic vacuum polarisation (HVP) in QCD+QED. This work is organised as follows:
We recap the setup used for the perturbative treatment of isospin-breaking effects and apply it to
the bare vector-vector correlation function. We further describe the renormalisation procedure of
the local vector current taking operator mixing into account and determine the relevant renormal-
isation factors. We construct the renormalised hadronic vacuum polarisation function and discuss
the status of our investigation of quark-disconnected contributions.

2. Inclusion of perturbative isospin-breaking effects by reweighting

We briefly summarise our setup for the perturbative treatment of isospin-breaking effects.
For a detailed description we refer to [4]. We consider the space of QCD+QED-like theories
parameterised by ε = (mu,md,ms,β ,e2). For the choice ε(0) = (m(0)

u ,m(0)
d ,m(0)

s ,β (0),0) with m(0)
u =

m(0)
d we obtain QCDiso together with a free photon field. In [4] we have shown that QCD+QED

can be related to QCDiso by reweighting via the identity

〈O[U,A,Ψ,Ψ]〉= 〈R[U ]〈O[U,A,Ψ,Ψ]〉qγ〉(0)eff

〈R[U ]〉(0)eff

R[U ] =
exp(−Sg[U ])Zqγ [U ]

exp(−S(0)g [U ])Z(0)
q [U ]

, (2.1)

where 〈. . .〉(0)eff is evaluated by making use of existing QCDiso gauge configurations and 〈. . .〉qγ
and

R[U ] are evaluated by means of perturbation theory in ∆ε = ε − ε(0) around ε(0). The required
Feynman rules are discussed in [4]. In order to fix the expansion coefficients ∆ε we make use of a
suitable hadronic renormalisation scheme [4].

The simulation code is based on the QDP++ [8] and FFTW3 [9] libraries and the open-
QCD [10] framework. So far, we have performed simulations on one gauge ensemble (c.f. Table 1)
containing 2004 configurations with a binning size of four. Quark-connected diagrams were esti-
mated with 32 stochastic U(1)-quark-sources at the mesonic source distributed on the time-slices
26−35 and 60−69 utilising the approximate translational invariance in the bulk of the lattice. The
QEDL photon propagator [4] was estimated with two Z2-photon-sources per quark-source.

T/a× (L/a)3 β a [fm] mπ [MeV] mK [MeV] mπL
H102 96×323 3.4 0.08636(98)(40) 350 440 4.9

Table 1: Parameters of CLS open boundary ensembles with Nf = 2+1 quark flavours of non-perturbatively
O(a) improved Wilson quarks and tree-level improved Lüscher-Weisz gauge action [1, 2].
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3. The bare vector-vector correlation function

In the Mainz setup [11, 12] we use both the local V γ

l and conserved vector currents V γ
c . Em-

ploying open boundary conditions we only give the bulk part of the operators for simplicity:

V γxµ

l = Ψ
x+µ̂Qγ

µ
Ψ

x V γxµ
c =

1
2
(
Ψ

x+µ̂Q(γµ +1)(W xµ)†
Ψ

x +Ψ
xQ(γµ −1)W xµ

Ψ
x+µ̂
)
.

W xµ = Uxµ exp(ieQAxµ) are the combined QCD+QED gauge links with the matrix of fractional
quark charges Q = diag

(2
3 ,−1

3 ,−1
3

)
. As we will see later in the context of renormalisation it is

convenient to decompose the electromagnetic current as V γ =V 3 + 1√
3
V 8, making use of

Vl
xµi = Ψ

x
Λ

i
γ

µ
Ψ

x Vc
xµi =

1
2
(
Ψ

x+µ̂
Λ

i(γµ +1)(W xµ)†
Ψ

x +Ψ
x
Λ

i(γµ −1)W xµ
Ψ

x+µ̂
)

(3.1)

with Λ0 = 1√
6
1 and Λi = 1

2 λ i for i = 3,8. We investigate correlation functions of the form

Ci2i1
d2l (x

0
2,x

0
1) =

1
|Λ123| ∑

~x1,~x2

1
3

3

∑
µ=1
〈V x2µi2

d2
V x1µi1

l 〉 d2 = l,c i2, i1 = 0,3,8 (3.2)

and evaluate them as described in section 2. Operators depending on combined QCD+QED gauge

links are expanded in the form O = O(0)+eO( 1
2 )

e2 + 1
2 e2O(1)

e2 +O(e3) making use of W xµ =Uxµ
(
1+

ieQAxµ − 1
2 e2Q2(Axµ)2

)
+O(e3). The expansion of the local vector current is trivial (Vl)

(0) = Vl,

(Vl)
( 1

2 )

e2 = (Vl)
(1)
e2 = 0 and for the conserved vector current we obtain

(V xµi
c )(0) =

1
2
(
Ψ

x+µ̂
Λ

i(γµ +1)(Uxµ)†
Ψ

x +Ψ
x
Λ

i(γµ −1)Uxµ
Ψ

x+µ̂
)
,

(V xµi
c )

( 1
2 )

e2 =
i
2
(
Ψ

x+µ̂QΛ
i(−γ

µ −1)(Uxµ)†
Ψ

x +Ψ
x
Λ

iQ(γµ −1)Uxµ
Ψ

x+µ̂
)
Axµ ,

(V xµi
c )

(1)
e2 =−1

2
(
Ψ

x+µ̂Q2
Λ

i(γµ +1)(Uxµ)†
Ψ

x +Ψ
x
Λ

iQ2(γµ −1)Uxµ
Ψ

x+µ̂
)
(Axµ)2,

respectively. Neglecting diagrams in which isospin-breaking is solely present in the sea quarks the
diagrammatic representation of the expansion C =C(0)+∑l ∆εlC

(1)
l +O(∆ε2) of Eq. (3.2) becomes(

Ci2i1
d2l

)(0)
=
〈 (V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0) 〉(0)

eff
,

(
Ci2i1

d2l

)(1)
∆m f

=
〈 (V i1

l )(0)(V i2
d2
)(0)

f +
(V i1

l )(0)(V i2
d2
)(0) f

+
(V i1

l )(0)(V i2
d2
)(0)

f +
(V i1

l )(0)(V i2
d2
)(0)

f

〉(0)
eff
,

(
Ci2i1

d2l

)(1)
∆β

=
〈 (V i1

l )(0)(V i2
d2
)(0)

∆β +
(V i1

l )(0)(V i2
d2
)(0)

∆β

〉(0)
eff
−
〈

∆β

〉(0)
eff

〈 (V i1
l )(0)(V i2

d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0) 〉(0)

eff
,

(
Ci2i1

d2l

)(1)
e2 =

〈 (V i1
l )(0)(V i2

d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)
(1)

e2

+
(V i1

l )(0)(V i2
d2
)
( 12 )

e2

+
(V i1

l )(0)(V i2
d2
)
( 12 )

e2

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)(0)

+
(V i1

l )(0)(V i2
d2
)
(1)

e2

+
(V i1

l )(0)(V i2
d2
)
( 12 )

e2

+
(V i1

l )(0)(V i2
d2
)
( 12 )

e2
〉(0)

eff
. (3.3)
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4. Renormalisation of the local electromagnetic current

In order to calculate the HVP using local electromagnetic current operators we have to de-
termine the renormalisation pattern of V γ

l . Treating isospin-breaking effects perturbatively it is
reasonable to consider an operator basis with definite transformation behaviour under isospin ro-
tations. For a given µ the flavour neutral vector currents V iµ

l with i = 0,3,8 exhibit mixing under
renormalisation, such that we have to introduce a matrix of renormalisation factors with entries
Z

V i2
l,renV i1

l
and i2, i1 = 0,3,8 to ensure the correct multiplicative renormalisation Vl,ren = ZVl,renVlVl. Al-

though open boundary conditions break the translational invariance in time direction, we expect the
renormalisation factor to have negligible time dependency far away from the boundaries. Correctly
renormalised correlation functions converge to their continuum limit with a rate defined by a power
in the lattice spacing a. Considering that the conserved vector current Vc does not renormalise, i.e.
ZVc,renVc = 1, we define a renormalisation condition for the local vector current Vl:

〈Vc,renVl,ren〉−〈Vl,renVl,ren〉= ZVc,renVc〈VcVl〉ZVl,renVl
T −ZVl,renVl〈VlVl〉ZVl,renVl

T = O(a)

⇔ 〈VcVl〉−ZVl,renVl〈VlVl〉= O(a). (4.1)

The O(a)-term is potentially time-dependent but we expect it to become constant for larger time
separations [13] as the specific form of the discretisation of the operators becomes less relevant. Af-
ter averaging Eq. (4.1) over the spatial components and projecting to~0-momentum we can express
the latter in terms of the correlation functions defined in Eq. (3.2), reading Ccl−ZVl,renVlCll = O(a).
In order to extract the renormalisation constants from the correlation functions Cll and Ccl we define
effective time dependent renormalisation factors Zeff,Vl,renVl =Ccl

(
Cll
)−1. We perturbatively expand

this definition and extract the effective renormalisation factors order by order:(
Zeff,Vl,renVl

)(0)
= (Ccl)

(0)((Cll)
(0))−1

,

(Zeff,Vl,renVl)
(1)
l =

(
(Ccl)

(1)
l − (Ccl)

(0)((Cll)
(0))−1

(Cll)
(1)
l

)(
(Cll)

(0))−1
. (4.2)

In Fig. 1 results for the effective renormalisation factor ZV 3
l,renV 3

l ,eff are displayed, where we have
only taken into account the quark-connected diagrams in Eq. (3.3). From the fits we extract the
following renormalisation factors with ZVl,renVl = (ZVl,renVl)

(0)+∑l ∆εl(ZVl,renVl)
(1)
l +O(∆ε2):

(ZVl,renVl)
(0) =

(
0.61736(21) 0.0 0.00159(12)

0.0 0.61853(31) 0.0
0.00159(12) 0.0 0.61587(22)

)
, (ZVl,renVl)

(1)
∆mu

=

(
−0.092(21) −0.113(25) −0.065(15)
−0.113(25) −0.162(22) −0.080(18)
−0.065(15) −0.080(18) −0.046(10)

)
,

(ZVl,renVl)
(1)
∆md

=

(
−0.092(21) 0.113(25) −0.065(15)
0.113(25) −0.162(22) 0.080(18)
−0.065(15) 0.080(18) −0.046(10)

)
, (ZVl,renVl)

(1)
∆ms

=

(
−0.149(5) 0.0 0.210(7)

0.0 0.0 0.0
0.210(7) 0.0 −0.298(10)

)
,

(ZVl,renVl)
(1)
∆β

=

(
2.6(7) 0.0 −0.34(26)

0.0 2.4(9) 0.0
−0.34(26) 0.0 2.7(7)

)
, (ZVl,renVl)

(1)
e2 =

(
−0.0225(24) −0.0129(17) −0.0054(16)
−0.0129(17) −0.0291(25) −0.0091(12)
−0.0054(16) −0.0091(12) −0.0186(13)

)
.

Vanishing components of (ZVl,renVl)
(1)
∆ms

only receive contributions from quark-disconnected dia-
grams which have been neglected. The renormalised electromagnetic current in terms of the bare
vector currents defined in Eq. (3.1) is then finally given by

V γ

d,ren =V 3
d,ren +

1√
3

V 8
d,ren = ∑

i

(
ZV 3

d,renV i
d
+

1√
3

ZV 8
d,renV i

d

)
V i

d d = l,c. (4.3)
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Figure 1: Effective renormalisation factor Zeff,V 3
l,renV 3

l
according to Eq. (4.2) in lattice units.

5. The renormalised hadronic vacuum polarisation function in QCD+QED

The subtracted HVP function Π̂(ω2) = Π(ω2)−Π(0) [14] in continuum and infinite-volume
QCD+QED is defined as Π̂(ω2)δ µ2µ1 =

∫
∞

0 dx0 K(ω2,x0)
∫

dx3〈V γxµ2V γ0µ1〉QCD−con with the inte-
gration kernel K(ω2, t)=− 1

ω2 (ω
2t2−4sin2(ωt

2 )). Making use of the renormalised electromagnetic
vector-vector correlation function obtained from Eqs. (3.2) and (4.3)

Cγγ

d2l,ren = ∑
i2,i1

(
Z

V 3
d2 ,renV i2

d2

+
1√
3

Z
V 8

d2 ,renV i2
d2

)(
Z

V 3
l,renV i1

l
+

1√
3

Z
V 8

l,renV i1
l

)
Ci2i1

d2l d2 = l,c.

and subtracting the QCD-disconnected part [15] the lattice approximation to Π̂(ω2) reads

(Π̂d2l,ren(ω
2))(0) =

x0
cut

∑
x0

2=x0
1

K(ω2,x0
2− x0

1)(C
γγ

d2l,ren(x
0
2,x

0
1))

(0),

(Π̂d2l,ren(ω
2))

(1)
l =

x0
cut

∑
x0

2=x0
1

K(ω2,x0
2− x0

1)(C
γγ

d2l,ren(x
0
2,x

0
1))

(1)
l l = ∆mu,∆md,∆ms,∆β ,

(Π̂d2l,ren(ω
2))

(1)
e2 =

x0
cut

∑
x0

2=x0
1

K(ω2,x0
2− x0

1)(C
γγ

d2l,ren(x
0
2,x

0
1))

(1)
e2 −

(
(Π(ω2))(0)

)2
. (5.1)

We choose x0
cut = x0

1 +22, above which the signal is lost. At larger times one may model Cγγ

d2l,ren by
a truncated spectral decomposition with parameters obtained from a fit at earlier times [11]. Fiq. 2
shows results for the quark-connected contributions in Eq. (3.3) to the HVP function.

6. Quark-disconnected contributions

For the evaluation of quark-disconnected diagrams in Eq. (3.3) we used the following setup:
For the quark loop at the mesonic source we used the inversions obtained from the quark-connected

4
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Figure 2: Renormalised HVP function according to Eq. (5.1) in lattice units.

calculation. The quark loop at the mesonic sink was estimated using stochastic volume sources in
combination with hierarchical probing [16]. We used 64 Hadamard vectors and one source per
configuration. At the given level of statistics we were only able to observe a signal in the pseudo-
scalar channel, but not in the vector channel relevant for the HVP.

In [17] a method to reduce the noise in the calculation of quark loops based on the one-end-
trick and frequency splitting in terms of quark masses was introduced. Below we discuss how this
technique can be adapted in order to include isospin-breaking effects. The key insight is the fact
that a difference of propagators of non-degenerate quark flavours f1 and f2 can be transformed into
a product of propagators using (S( f ))−1 = D( f ), where D( f ) is the isosymmetric Dirac operator, i.e.

S( f2)−S( f1) = S( f2)(D( f1)−D( f2))S( f1) =−(m( f2)−m( f1))S( f2)S( f1). (6.1)

For stochastic quark sources η with 〈ηη†〉η = 1 the split-even random-noise estimator reads

Trsc(ΓS( f2)xx)−Trsc(ΓS( f1)xx) =−(m( f2)−m( f1))
〈

Trsc(Γ(S( f2)η)x(η†S( f1))x)
〉

η

. (6.2)

Introducing additional quark flavours with m( f1) < .. . < m( fn) one defines a frequency-splitting
random noise estimator Trsc(ΓS( f1)xx) = ∑

n−1
i=1

(
Trsc(ΓS( fi)xx)−Trsc(ΓS( fi+1)xx)

)
+Trsc(ΓS( fn)xx) ,

where Trsc(ΓS( fi)xx)−Trsc(ΓS( fi+1)xx) is calculated using Eq. (6.2) and Tr(ΓS( fn)xx) is evaluated
for the heaviest quark flavour fn via a hopping parameter expansion or hierarchical probing [16].
Making use of the fact that the vertices derived from the perturbative expansion [4] are flavour di-
agonal and up to a normalisation factor flavour blind, i.e. Vqq

f2 f1 = δ
f2
f1

V̂qq, Vqqγ
f2 f1 = δ

f2
f1

e( f1)V̂qqγ

and Vqqγγ
f2 f1 = δ

f2
f1
(e( f1))2V̂qqγγ , we can extend the latter approach to quark-disconnected contribu-

tions in the isospin-breaking expansion. The difference of sequential propagators over the vertices
V = V̂qq,V̂qqγ cAc,V̂qqγγ c2c1A2

c2A1
c1 contracted with stochastic photon fields A, where c ≡ xµ , can

also be written as a sum of products of a propagator and a sequential propagator making use of

5
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Eq. (6.1):

S( f2)V S( f2)−S( f1)V S( f1) = S( f2)V (S( f2)−S( f1))+(S( f2)−S( f1))V S( f1)

=−(m( f2)−m( f1))(S( f2)V S( f2)S( f1)+S( f2)S( f1)V S( f1)).

The split-even random-noise estimator for quark loops including a vertex then reads

Trsc(Γ(S( f2)V S( f2))xx)−Trsc(Γ(S( f1)V S( f1))xx)

=−(m( f2)−m( f1))
〈

Trsc(Γ(S( f2)V S( f2)η)x(η†S( f1))x)+Trsc(Γ(S( f2)η)x(η†S( f1)V S( f1))x)
〉

η

.

Double sequential propagators S( f )V2S( f )V1S( f ) are treated in a similar fashion.

7. Conclusions and Outlook

In order to construct the renormalised HVP function in QCD+QED we introduced the pertur-
bative expansion of the vector-vector correlation functions for leading isospin-breaking effects and
determined the renormalisation factors for the local vector current including operator mixing on
one ensemble. We also commented on the status of our investigation of quark-disconnected contri-
butions, introducing a suitable adaption of the one-end trick to perturbative isospin-breaking. We
plan to extend our analysis by the hadronic contribution to the anomalous moment of the muon,
where we reconstruct the large-time behaviour of the vector-vector correlation function by the
ground state mass, as well as by baryon masses used for the scale setting.

We are grateful to our colleagues within the CLS initiative for sharing ensembles. Our calculations
were performed on the HPC Cluster "Clover" at the Helmholtz Institute Mainz and on the HPC Cluster
"Mogon II" at the University of Mainz.
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