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with measured experimental spectra from the BaBar and Belle collaborations. This allows us to
reliably extrapolate the light-lepton form factor predictions to large values of the four-momentum
transfer squared, q2, and in turn to derive precise predictions for Rρ and Rω , the ratio of the total
decay rates of B→ ρ τ ντ and B→ω τ ντ for τ final states with respect to light leptons in the SM.
In addition, we investigate the impact of all four-fermi operators on the semitauonic q2 spectra
and these ratios.

European Physical Society Conference on High Energy Physics - EPS-HEP2019 -
10-17 July, 2019
Ghent, Belgium

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:markus.prim@kit.edu
mailto:florian.bernlochner@uni-bonn.de
mailto:drobinson@lbl.gov


P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
2
5
0

Precision predictions for B→ ρ τ ντ and B→ ω τ ντ in the SM and beyond Markus Tobias Prim

1. Introduction

The effective Standard Model (SM) Lagrangian describing semileptonic b→ u`ν` transitions
is given by

Leff =
−4GF√

2
Vub(uγµPLb)(ν γ

µPL`)+h.c., (1.1)

with Fermi’s constant GF, the CKM matrix element Vub and the projection operator PL = (1−γ5)/2.
For resonant final states the hadronic matrix element for the b→ u transition can be written as〈

V (pV )
∣∣uγ

µPLb
∣∣B(pB)

〉
= ∑T µ

i Fi(q
2), (1.2)

where q = pB − pV is the four-momentum transfer in the decay and V denotes any light final state
meson (we will discuss V ∈ {ρ,ω}). Further, the Ti denote tensorial structures of the involved
4-momenta and polarizations, and the Fi form factors. The sum runs over all allowed tensorial
structures. The decay B→ V `ν` is shown at parton level and as an effective diagram in Figure 1.
In the right diagram the arms are described by the tensorial structures Ti and the blob is described
by the form factors Fi. The form factors Fi present in Equation 1.2 cannot be calculated with per-
turbation theory in the strong coupling constant and have to be determined using non-perturbative
methods.

b u

d d

ν`

`

W

B V

B ν`

`

V

Figure 1: One possible parton level Feynman diagram (a) and the effective Feynman diagram (b). In the
effective Feynman diagram, the propagator of the W is integrated out, i.e. the weak interaction is point-like,
and the gluon interactions are described by the blob.

The Bourrely-Caprini-Lellouch (BCL) parametrization [1] is a model-independent ansatz for
the form factors based on a fast converging series expansion of

z(q2, t0) =

√
t+−q2−√t+− t0√
t+−q2 +

√
t+− t0

,

with t+ = (mB +mV )
2 ,

and t0 = (mB +mV )(
√

mB−
√

mV )
2 ,

where mB is the B meson mass and mV is the mass of the final state meson. The form factors are
expanded as:

Fi(q
2) = Pi(q

2)∑
k

α
i
k

(
z(q2)− z(0)

)k
,

with Pi(q
2) = (1−q2/m2

R)
−1 ,
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where mR is the mass of first resonance in the spectrum. For the transition into vector-like particles,
i.e. B→V `ν`, there exist a total of 8 independent form factors: AP, V , A0, A1, A12, T1, T2, T23. The
pseudoscalar form factor AP can be removed using the equations of motion:

AP =−2
mM

mb +mu
A0 .

For the SM process, which is governed by a V-A current, only the vector (V ) and axialvector (A0,
A1, A12) form factors contribute. Tensor currents can arise in models beyond the SM, and the three
tensor (T1, T2, T23) form factors can contribute. It is convenient to express the V-A form factors in
the helicity basis with the helicity amplitudes [2]:

H±(q
2) =

√
λ (q2)

V (q2)

mB +mV
± (mB +mV )A1(q

2) ,

H0(q
2) =

8mBmV√
q2

A12(q
2) ,

Hs(q
2) =

√
λ (q2)√

q2
A0(q

2) .

(1.3)

The SM differential rate is then given by

dΓ

dq2 = |Vub|
G2

F

192π
3m3

B
q2
√

λ (q2)

(
1−

m2
`

q2

)2

×

[(
1+

m2
l

2q2

)(
H2
+(q

2)+H2
−(q

2)+H2
0 (q

2)
)
+

3m2
l

2q2 H2
s (q

2)

]
,

(1.4)

with the Kaellen function λ (q2) =
((

mB +mV )
2−q2

))((
mB−mV )

2−q2
))

, where mV denotes
the mass of the final state meson. The differential rate can be simplified for light leptons ` = e,µ
with the zero mass approximation m` = 0:

dΓ

dq2 =Vub
G2

F

192π
3m3

B
q2
√

λ (q2)
[
H2
+(q

2)+H2
−(q

2)+H2
0 (q

2)
]
. (1.5)

The available theory calculations from light-cone sum-rules (LCSR) [3] for the coefficients of
the BCL expansion are only valid in a q2 region up to about 14GeV2. For the q2 > 14GeV2 region
the prediction solely relies on extrapolation. In the following we show how the precision in the
region q2 > 14GeV2 can be improved by combining the theory prediction with experimental data.

2. Data-Theory Fit

The values of the form factors Fi are evaluated at three distinct points in the spectrum: q2 =

[0,7,14]GeV2 with the given BCL coefficients from the LCSR calculation. The resulting vector is

2
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named fLCSR. Their correlation CLCSR is determined by generating random samples from a multi-
variate normal distribution using the covariance matrix from the LCSR calculation. The associated
χ

2
LCSR term is constructed as

χ
2
LCSR = ∆fT

t C−1
LCSR∆ft , (2.1)

with ∆ft = f(a)− fLCSR denoting the vectorial difference involving a prediction vector f(a) depend-
ing on the expansion coefficients a. The χ

2 terms for the individual experimental measurements of
References [4, 5, 6] are constructed as

χ
2
exp(a) = ∆Γ

T
e C−1

exp∆Γe , (2.2)

with ∆Γe = Γ(a)−Γexp denoting the vectorial difference of the predicted and measured rates. The
global χ

2 function takes the form

χ
2(a) = χ

2
LCSR(a)+∑

exp
χ

2
exp(a) . (2.3)

The form factors pre- and post-fit are given in Figure 2. It is clearly visible that corrections on
the form factors can be extracted from the experimental measurements.

3. Predicting Rρ and Rω

3.1 SM Prediction

We predict Rρ and Rω in two different q2 intervals:

• q2 ∈ [0,q2
max]GeV. The ratio is independent of the shape of the differential distributions.

• q2 ∈ [m2
τ ,q

2
max]GeV. The evaluation of the differential rate in the same q2 region for tauonic

and semileptonic final states increases the correlation between nominator and denominator
in the ratio and thus larger cancellation of uncertainties is possible. However, the prediction
then depends on the actual shape of the light-lepton differential rate, due to the introduced
cut.

We define R and R̂ as:

RV =

∫ q2
max

m2
τ

dΓ(B→V τ ν)

dq2 dq2

∫ q2
max

0
dΓ(B→V `ν)

dq2 dq2
,

R̂V =

∫ q2
max

m2
τ

dΓ(B→V τ ν)

dq2 dq2

∫ q2
max

m2
τ

dΓ(B→V `ν)

dq2 dq2
.

The predictions for RV and R̂V are tabulated in Table 1.
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Figure 2: Pre- and post-fit form factors. It is clearly visible that corrections on the form factors can be
extracted from a combined theory and data fit.
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Figure 3: The normalized q2 spectra for B→ ρ `ν and B→ ρ τ ν (left) and B→ω `ν and B→ω τ ν (right)
with the form factor expansion coefficients from light cone sum rules (dotted orange and yellow) and with
the expansion coefficients extracted from the theory plus data fit (dotted blue and purple).

RV LCSR Fit Improvement

Rρ 0.532±0.011 0.535±0.008 25%
Rω 0.534±0.018 0.546±0.015 16%

R̂ρ 0.605±0.007 0.606±0.006 6%
R̂ω 0.606±0.012 0.612±0.011 7%

Table 1: The predictions for the ratio of tauonic to leptonic final states. The column ‘LCSR’ uses only the
theory prediction for the form factors from [3]. The column ‘Fit’ uses the coefficients extracted from the fit
described in Section 2.

3.2 New Physics Contribution to Rρ and Rω

The following predictions assume that new physics only contributes to the heavy leptons, i.e.
the light leptons are free from any new physics contribution. The complete basis of the four-Fermi
operators mediating the b→ qτ ντ is given by

2 i
√

2VubGF [qχ
i
jγ

µPjb][`λ
k
l γµPlν ] , (3.1)

where χ
i
j and λ

k
l are the new physics coupling constants to the quark and lepton current, respec-

tively. These new physics couplings are normalized to the SM coupling strengths. Furthermore, the
indices j, l = {L,R} denote the helicity of the b quark and the neutrino. The indices i,k = {S,V,T}
indicate that the current of the interaction is either a scalar, vector, or tensor current. The influence
of the new physics contribution on Rρ and Rω is the same, except for mass differences, since both
are vector-like particles. The influence of new physics on the ratio R for each individual coupling
is shown in Figure 4.

4. Summary and Outlook

We have demonstrated that we were able to improve the precision of BCL expansion coef-
ficients by combining theory predictions with experimental measurements. This leads to more
precise predictions of Rρ and Rω and R̂ρ and R̂ω , reducing the uncertainties by 20% and 7%, re-
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Figure 4: The impact of a new physics current to the ratio of tauonic to leptonic final states in different
new physics scenarios. The slight differences between the ρ and ω final states originates solely from the
kinematic differences in the decay. The influence of new physics itself is the same, due to their identical
vector-particle nature.

spectively, for R and R̂. In addition, we investigated the impact of new physics contributions on R
for all four-Fermi operators.
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