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A comprehensive measurement of solar neutrino fluxes has been completed using the Borexino Phase-
II data in an extended energy range. The measurement reports pp, 7Be, and pep neutrino fluxes with
the highest precision ever achieved, 8B with the lowest energy threshold, the first Borexino limit on hep
neutrinos, as well as the best limit on CNO neutrinos. These results and their physics interpretations
concerning the so-called solar metallicity puzzle and the electron-neutrino survival probability, as well
as other highlights of the analysis, have been summarized in this talk.
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Comprehensive measurement of pp-chain solar neutrinos with Borexino

1. Solar neutrinos

The Sun is powered by nuclear fusion reactions that convert hydrogen into helium. More than 99% of the
solar energy originates in the so-called pp-chain reaction. An alternative CNO catalytic cycle is hypothesized to
contribute up to 1% of the energy output, but it has never been observed yet. Both processes are depicted in Fig. 1,
and different types of neutrinos originating at different stages of the reactions are highlighted. Neutrinos that are
the products of these reactions are the only direct carriers of information about the processes in the core of the
Sun.

  

2H+p→3He+γ

3He+3He→4He+2p

3He+4He→7Be+γ

7Be+p→8B+γ

7Li+p→24He

8Be*→24He

12C+p→13N+γ

13C+p→14N+γ

14N+p→15O+γ

15N+p→4He+12C
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99.6% 0.4%
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15N+p→16O+γ

16O+p→17F+γ
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7Be+e-→7Li+νe

3He+p→4He+e++νe

p+e-+p→2H+νep+p→2H+e++νe

8B→8Be*+e++νe

13N→13C+e++νe

15O→15N+e++νe
17F→17O+e++νe

Figure 1: The pp chain and the CNO cycle reactions producing the so-called pp, pep, 7Be, 8B, hep, and CNO
neutrinos.

While the spectral shapes are defined by the fusion reactions, the total flux depends on many parameters that
vary according to the assumed composition of the Sun, in particular the fraction of the heavy elements. Standard
Solar Models (SSMs) predict the values of the total fluxes based on different compositions, and are divided into
two classes, low and high metallicity (LM and HM, respectively), depending on the fraction of elements heavier
than helium. An example of solar neutrino spectra resulting from one type of LM-SSM called B16 [1] are shown
in Fig. 2a.

Current knowledge about these models does not provide enough information to determine the metallicity of
the Sun. By measuring the solar neutrino fluxes we are able to study the reactions in the pp chain. Furthermore,
using the knowledge about the fluxes and assuming a certain solar model, we probe the neutrino oscillations theory
for deviations from standard interactions; while adopting the MSW-LMA theory of neutrino oscillations [2] we
test SSMs. Apart from the pp-chain neutrinos, the measurement of the flux of CNO neutrinos would help us solve
the metallicity puzzle described above.

2. The Borexino detector

Borexino is a liquid scintillator detector the primary goal of which is measuring the fluxes of solar neutrinos
[3]. It is located in the Laboratori Nazionali del Gran Sasso in the mountains of Italy at 3800 m water-equivalent
depth. In 2012 Borexino started Phase-II of data taking which is characterized by its higher radiopurity. This was
made possible due to extensive purification campaigns in 2010 and 2011 after which the already unprecedentedly
low radioactive background of the detector was improved even more. The schematic representation of the detector
is shown in Fig. 2b. It is nominally equipped with 2200 photomultiplier tubes (PMTs) mounted on the Stainless
Steel Sphere (SSS) that point inwards into the Inner Detector (ID), which contains the scintillator; and 220 PMTs
pointing outwards in the Outer Detector which serves the purpose of a Cherenkov muon veto and a shield against
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Comprehensive measurement of pp-chain solar neutrinos with Borexino

external background. Apart from that, the ID contains two thin nylon spheres which protect the scintillator from
radon diffusion from the outside. [4].
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Figure 2: (a) The spectra of the solar neutrinos in units of cm−2 s−1 MeV−1 for continuous spectra and cm−2 s−1

for monoenergetic lines. (b) A schematic representation of the Borexino detector.

3. The Borexino solar neutrino analysis

The solar neutrino analysis is divided into two parts with different approaches: the Low Energy Region (LER,
Sec. 3.1) and High Energy Region (HER, Sec. 3.2). The LER analysis results in the measurement of the rates of pp,
7Be, and pep neutrinos, as well as an upper limit on CNO neutrinos; while 8B neutrino measurement is conducted
in the HER analysis, with an additional study on the rare hep neutrinos. In both HER and LER, the steps to obtain
the final neutrino rates are similar. The first step is to obtain a spectrum of neutrino-like events using selection
cuts designed to remove unwanted events. Then, in order to extract the neutrino rates, fits of global variables are
performed.

3.1 Low energy region analysis

3.1.1 Data selection

The data used in this analysis covers the so-called Phase-II of the Borexino dataset which spans from De-
cember 2011 to May 2016 and covers the exposure of 1291.51 days × 71.3 tons. Some of the prominent selection
cuts are the following:

• Muon cut: removes muon events. The efficiency of this cut is ∼99.992%.

• Muon daughter cut: removes the products of muon spallation in the LS and effects of electronics saturation,
via applying a 300 ms veto after each muon event.

• Fiducial Volume cut: removes events far from the center of the detector in order to maximize the active
volume while minimizing radioactive background coming from the nylon spheres, PMTs, and the SSS.

Apart from these cuts, a special Three-fold coincidence (TFC) method is applied, which does not remove
any events from the sample, but rather divides it into two categories, rich and depleted in 11C. Cosmogenic 11C
background originates from muon spallation on the 11C molecules present in the LS:

µ + 12C→ µ + 11C+n. (3.1)

The TFC algorithm looks for coincidences of a muon event and a neutron capture (n+ p→ D+ γ) which
happens on average ∼ 250 µs after the muon. After such a coincidence is found, a cylindrical volume following
the muon path is constructed, as demonstrated in Fig. 3a. All the events in each cylinder are taken to contribute to

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
4
0
0

P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
4
0
0

Comprehensive measurement of pp-chain solar neutrinos with Borexino

the so-called TFC-tagged spectrum containing ∼92% of 11C and ∼40% of exposure; and the remaining 60% of
the exposure constitutes the TFC-subtracted spectrum with the rest of the 11C events. Both spectra are used in the
multivariate fit. The effect of the TFC subtraction as well as the cuts described before can be seen in Fig. 3b.

(a) (b)

Figure 3: (a) Schematic representation of a muon track passing through the detector (blue line) and the region
around it where high amounts of 11C are expected to be found (light blue cylinder). (b) Phase-II energy spectrum
of all Borexino events (black) and the spectra after applying the muon and muon daughter cut (blue), FV cut (red),
and TFC cut (green) in this order.

3.1.2 Multivariate fit

The principle of the multivariate fit is to use a product of multiple likelihood functions that depend on the
same parameters. In the Borexino LER analysis, four spectra contribute to the multivariate likelihood:

LMV(~θ) = LTFC-tagged(~θ) ·LTFC-sub(~θ) ·LRD(~θ) ·LPS(~θ), (3.2)

(a) The TFC-tagged energy spectrum. (b) The TFC-subtracted energy spectrum.

(c) Pulse shape variable distribution of the TFC-
subtracted data sample.

(d) Radial distribution.

Figure 4: Distributions and fits of the components of the multivariate fit.
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Comprehensive measurement of pp-chain solar neutrinos with Borexino

the TFC-tagged and TFC-subtracted energy spectra mentioned in Sec. 3.1.1, the radial distribution, and the
so-called pulse shape variable distribution, a parameter tuned to distinguish electron and positron events. It is used
to disentange the 11C e+ decays originating from the remaining 11C in the TFC-subtracted spectrum. Examples
of the distributions and fits are shown in Fig. 4.

3.2 High energy region analysis

The HER itself is divided into two subregions, HER-I (3.2 - 5.7 MeV) and HER-II (5.7 - 16 MeV). The
main backgrounds in HER-I and HER-II are natural radioactivity from 208Tl, and external gamma rays following
neutron capture processes on the SSS, respectively. The value of 5.7 MeV has been chosen this way because the
208Tl decays never exceed 5 MeV.

3.2.1 Data selection

The HER analysis uses the following selection cuts:

• Muon cut: same as in the LER analysis (Sec. 3.1.1).

• Neutron cut: removes cosmogenic neutron captures on 14C by applying a 2 ms veto after all muons.

• Fast cosmogenics cut: removes cosmogenic isotopes by applying a 6 s veto after each internal muon.

• Run start/break cut: remove fast cosmogenic isotopes from potential muons missed during breaks in data
taking.

• 10C cut: remove cosmogenic 10C by vetoing a spherical volume of radius 0.8 m around all muon-induced
neutron captures.

• 214Bi-214Po cut: removes coincidence pairs of 214Bi and 214Po, daughters of the radioactive decay of 222Rn.
This cut is also used in the LER analysis and its efficiency is ∼92% .

• Fiducial volume cut: z < 2.5m to remove the events in the top layer of the LS; applied only in HER-I.

3.2.2 Radial fit

The most important feature of the HER analysis is that independent fits are performed only on the radial
distributions of the selected events. This means that there is no assumption on the neutrino energy spectrum,
which allows us to probe for deviations from the MSW theory. Examples of the fits are shown in Fig. 5. The
rate of 8B neutrinos is extracted from these fits, while the rate of hep neutrinos is obtained via a simple counting
analysis for energies above 10 MeV.

(a) HER-I (b) HER-II

Figure 5: Examples of the data sample (black stars), fit results (red) and reference shapes (see legends) of the
HER-I and HER-II analyses.
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Comprehensive measurement of pp-chain solar neutrinos with Borexino

4. Results and implications

The LER and HER analyses result in a comprehensive study of all solar neutrino types [5]:

• pp: 9.5% precision (improved from 11.5%);

• pep: 16% precision (improved from 21.5%), discovery for the first time (> 5σ measurement);

• 7Be: 2.7% precision (improved from 4.5%), two times more precise than the theoretical prediction;

• 8B: 8% (improved from 18.5%);

• hep: 90% CL upper limit (for the first time);

• CNO: 95% CL upper limit;

4.1 Solar models

Using the LER results on pp and 7Be neutrinos, one can calculate the relative intensity of the pp-I and pp-II
terminations of the pp-chain depicted in Fig. 1:

RI/II =
2φ(7Be)

φ(pp)−φ(7Be)
, (4.1)

where φ denotes the neutrino flux of the given type. The theoretical predictions are RI/II = 0.180±0.011 and
RI/II = 0.161±0.010 for HM- and LM-SSM, respectively. The experimental result is RI/II = 0.178±0.027 which
is compatible with the expected values.

Another way to take a look at solar metallicity is to use only the results on 7Be and 8B neutrino fluxes which
are most dependent on the HM- and LM-SSM predictions. As can be seen from Fig. 6a, the Borexino measurement
gives a weak hint towards HM-SSM. In a global fit together with all solar experiments and KamLAND, the hint
further weakens. In this fit, the oscillation parameters θ12 and ∆m2

12 are left free to vary, and the results returned
by the fit are consitent with the ones obtained in [2].

(a) (b)

Figure 6: (a) Allowed 1σ theoretical regions of the 8B and 7Be fluxes according to LM-SSM (blue) and HM-SSM
(red), compared to the Borexino measurement (green) and a global fit (grey). (b) Electron survival probability
values in different energy regions using the Borexino measurement compared to the vacuum oscillation model and
the MSW-LMA model.

4.2 Neutrino oscillations

In Fig. 6b one can see the Borexino results on the electron survival probability based on different pp-chain
neutrino fluxes. The Borexino results are represented by points, while the theoretical predictions according to the
vacuum oscillation model and the MSW-LMA modal are represented by the grey and the pink bands, respectively.
Borexino is the only experiment that can probe Pee in both vacuum and matter dominated regions. The results
disfavour vacuum oscillations at 95% CL.
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Comprehensive measurement of pp-chain solar neutrinos with Borexino

4.3 Thermodynamic equilibrium of the Sun

Using the neutrino rates and the nuclear reactions from Fig. 1, one can calculate the total power to be L =

(3.89± 0.42)× 1033 erg s−1 which is compatible the photon output L = (3.846± 0.015)× 1033 erg s−1. This
finding is an experimental confirmation of the nuclear origin of the solar power. Since Borexino gives a real-time
picture of the core Sun, the finding also proves the thermodynamic equilibrium of the Sun over the time scale
of 105 years. Moreover, this latest Borexino result holds the best precision obtained by a single solar neutrino
experiment.

5. Outlook

The CNO neutrino analysis is going to be carried out on the Borexino Phase-III data which starts from July
2016. The main challenge of this measurement is the extreme similarity of the CNO spectral shape to that of 210Bi
and pep neutrinos which can be seen in Fig. 7a. One of the strategies of the CNO analysis is to constrain the rate
of 210Bi, a β -emitter, by measuring the events coming from its daughter, 210Po. It is the only α emitter, and can
be measured on an event-by-event basis using pulse shape information. An important part of this estimation is to
disentangle the non-equilibrium vessel contamination of 210Po. This is made possible due to the detector thermal
insulation campaign conducted in 2015. The resulting thermal stabilization can be seen in Fig. 7b, where the 210Po
rate is measured in cubic volumes uniformly dividing the inner vessel. Sensitivity studies with toy Monte Carlo
show possibility of CNO measurement between 3σ and 4σ .

(a) (b)

Figure 7: (a) The Borexino neutrino data (black) and the theoretical spectra of 210Bi (green), pep (blue), and CNO
(red) neutrinos. (b) The dependence of 210Po rate in cubic volumes on time.
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