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1. Different Semirelativistic Bound-State Treatments of Bincaré-Covariant Descent

Firmly grounded within the framework of relativistic quant field theories, the homogeneous
Bethe—Salpeter equation [1] forms a Poincaré-covaridingjtanot always easy-to-handle, approach
to bound states. Driven by the desire to obtain analytics gasier to control, yet still to some extent
(semi-) relativistic bound-state treatments, more orsesgere simplifications of the Bethe—Salpeter
formalism have been proposed: Ignoring entirely all depend on timelike variables generates the
rather broad class of (merely)stantaneouethe—Salpeter equations [2]. Assuming, furthermore,
also free propagation of the bound-state constituents leeditieSalpeter equatiofB]. Skipping all
negative-energy contributions and all reference to anydpgrees of freedom eventually yields the
spinless Salpeter equatiptie eigenvalue equation of a Hamiltonidrgenerically consisting of the
bound-state constituents’ relativistic kinetic energyg arpotential/ encoding all their interactions.
For the case of bound states of two particles of equal massesch such Hamiltoniald thus reads

H=2yp+m+V(x). (1.1)

The nonlocality of this operatdd renders hard to findxact analyticsolutions to its eigenvalue
problem. Inview of this, (rather bizarre) approximatiooste spinless Salpeter equation have been
proposed, by manipulations such as expanding kinetic &rsetgone order beyond the Schrodinger
limit, arriving at operators not bounded from below, anckiting the Schrddinger limit into the thus
fabricatedpseudo-spinless-Salpetequations, entirely ignoring the operator nature of thélam.
Unsurprisingly, most of these pseudo-spinless-Salpé&iemats do not withstand rigorous scrutiny.

Definitely more reliable strategies rely on the derivatibrignrous statements on the spectrum
of the operatoH, such as establishing its boundedness from below (Seatp3pwaiding bounds on
number (Sect. 5) and location (Sect. 4) of its discrete &igers or validating approximate findings
by the properelativistic virial theoren4,5]. The latter bulk of tools has been applied to relatigis
problems defined by, for instance, interaction potentidbs) =V (r), with r = ||, of Woods—Saxon
[6,7], Hulthén [7,8], Yukawa [9], kink-like [10], and geradized-Hellmann [11] form. We highlight
the capability of this programme for the illustrative segeheralized Hellmann potentials (Sect. 2).

Table 1: Classification of all generalized Hellmann potent\algr) with respect to the size of the coupling
of their Yukawa contributions relative to the nonvanishiogplingk = 0 of their Coulomb contribution [11].

Boundedness Characteristic Behaviour near Sign of sum  tiReletween

from below of potential the origin="0 of couplings coupling® andk
unbounded “singular” VH(r) P K+0>0 U>K
r—
U=K
O<u<kK
v=0
—-Kk<Lv<0
bounded finite at origin -~ Vu(r) Y b K+0=0 U=—K
r—
repulsive core  Vy(r) 0 +oo K+u<0 U< —K
r—
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2. Set of Generalized Hellmann-type Potentials: Classifiteon by Overall Behaviour

Broadening Hellmann'’s idea [12,13] of the potential expeacied by valence electrons in atoms
to involve attractive Coulomb and repulsive Yukawa porsidthe set of all superpositions (Fig. 1) of
a Coulomb contribution, with nonnegative couplingand a Yukawa-like contribution with positive

range parametdrand coupling of either sign defines the class of generalized Hellmanmgiate
K exp(—br
Vi (r) = Ve (r) + Wy (r) :—?—up(f) , k>0, wZ0, b>0. (21)
Both individual components, tantamount toperametric limitsu — 0, the Coulomb potential, and

Kk — 0, the Yukawa potential, have been discussed thoroughlgis.[Rl4—18] and [9], respectively.
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Figure 1: Samples of the sirRon-Coulombitypes of (solid blackyeneralizedHellmann potential$iy(r) of
Table 1 [11], consisting of a (dashed magenta) Coulomb\fsdrd, with couplingk = 1, plus a (dotted blue)
Yukawa par¥y (r), with couplingu = 10 (a),u =1 (b),u =0.5(c),u = —0.5(d),u = —1 (e), oru = -2 (f).

The types of arising spectra allow to subdivide this settihéoseven categories of Table 1 [11].
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3. Eigenvalue Spectra and Coupling Parameters: Straightfovard Rigorous Bounds

The first goal in one’s quest for bound states must be to ifyecdinstraints on the potential that
ensure the semiboundedness of the spectyof the resulting spinless relativistic Hamiltonikin
For large distances every potential of generalized Hellmann shape approdath€sulombic part:

This observation, in turn, entails that all discrete eigdmesE, of H, related to the bound states, are
bounded from above by, <0,k=0,1,2,..., in other words, all of these are definitely nonpositive.

“Nonsingular” Hellmann potentials are bounded from below [since they all satigfy(r) > —oo]
and thus, due to the nonnegativ;p,&' p? + m? > 0 of any kinetic term, also their Hamiltonians:

H>Wu(r) > min Vy(r) > —oo for U<—K, (3.1)
0<r<oo
H>Wy(r) >W(0)=ub for U=—K. (3.2)

“Singular” Hellmann potentials develop, because of the relation> —k among their couplings,
negative singularities at= 0 bounded from below by an associated Coulomb-like behaviou

VH(r) > —g

_ a=K+v for v>0 = W(r) <0,
Z - with

a=kK for v<O0 — W(r)>0.
The spectra of the thereby defined relativistic Coulomb j@rol, oy, satisfy [14,16], in turn,

T \2 . ) 4
—(—= <—-=1 .
1 ( 7 ) if and only if a< - 1.273239..
Oy > 2mMx (3.3)
V1_q?
# for a< 1 ,
proving their Hellmann counterparts to be, too, boundeahfoelow. Exploiting the trial state
~ 1
X) Oexp(—ur — U—->>

with ¢ > 0 in the expectation values of both kinetic te&;vﬁ_)z +m?[8,9] and potentialjy(r),
it is trivial to establish that the couplings entering anyl@nn potential have to be bounded:

<H>:<l_76_[_K_U>“+O(1)—>—oo for K+U>1—6

3 U—00 3
! 16
K+U§§T:1.69765.. for v>0,
e
! 16
K<—+]U] for —K<U<0.
3

For all those interested in a few more detalils, it might basabte to consult, for instance, Ref. [19].

4. Playing the Mini-Max Game: Variational Upper Bounds on Discrete Eigenvalues

As soon as the boundedness from below of a reasonably defaredtbnian operator has been
established, pinning down its bound states does make @ndbe basis of a characterization of its
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discrete spectrum by the famous minimum-—maximum theorigioraus upper bounds on as well as
improvable approximate estimates of the localization afrfabstate energy levels can be derived by
straightforward application of adequate variational teghes: a rather convenient trial-space basis
utilizes products of generalized Laguerre orthogonal pofgials and spherical harmonics [20-22].
Table 2 shows bounds on energy levels for three of the sixWakgart-affected categories in Fig. 1.

Table 2: Bounds on the binding energies of low-lying eigenstatesr(iified by radialn,, and orbital angular
momentum¢, quantum number) of the Hamiltonian (1.1) with generalidetimann potential (2.1) for three
illustrative choices of the couplingsandu, and one common Yukawa range- m. The upper bounds result
from our trial-space basis, for parametgrs mandf = 1, the lower ones from Egs. (3.1) through (3.3) [11].

| Upper bound oy = Ex — 2m[m] (k € Np)

Bound state | k=uv=3 K=1,0=-1 K=1,0=-2
Ny Y4 | [Fig. 1(b)] [Fig. 1(e)] [Fig. 1(f)]
0 0 —-0.11673 —0.17951 —0.14410
0 1 —0.01579 —0.06294 —0.06157
0 2 —0.00616 —0.02813 —0.02812
0 3 — —0.01553 —0.01553
1 0 —0.02107 —0.05464 —0.04786
1 1 —0.00509 —0.02810 —0.02762
1 2 — —0.01482 —0.01481
1 3 — —0.00624 —0.00624
2 0 —0.00688 —0.02566 —0.02338
2 1 — —0.01391 —0.01356
2 2 — —0.00122 —0.00120
3 0 — —0.01104 —0.00840
Lower bound orBy [m] | —0.58578 .. -1 —0.37336...

The quality of the corresponding approximate variationggestates may be estimated by their
fulfilment of the adequate, i.aelativistic virial theorem [4,5] pertaining to any exact eigenstate
of any operatoH (defined, of course, by | x) = E | X)), easily deducible for our Hamiltonian (1.1).
(For those interested in slightly more details, it may beisahle to consult, for example, Ref. [19].)

5. Discrete Spinless-Salpeter Energy Levels: ConstraingnTheir Maximum Number

A central issue in any spinless-Salpeter business is thalaetmberof bound states supported
by a potential: how many bound states can one expect to fing&rticular, one would like to know,
at least: is their number finite or infinite? Unfortunatetythat context exact results are not abound.
A strict bound [23] on the number of spinless-Salpeter baiatks exists for every nonpositive
potentialV (x) < 0 that satisfies the merely finiteness-assuring conswaiite L%2(R%) N L3(R3).
For a rather simple reason, however, none of the generafigichann potentials may belong to this
set: for large, due to the rapid decay of its Yukawa part any such potermiada@aches a Coulombic
behaviour; the corresponding number of discrete energgneaues thus will grow beyond bounds.
Even if so, aspectral comparison theoremecalled in Refs. [18,20-22,24], entails upper bounds on
individual spinless-Salpeter energy levels, given byrthenrelativistic (Schrodinger) counterparts.
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