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We present a computation of energy-energy correlation in e+e− annihilation at next-to-next-to-
leading order accuracy in perturbative QCD matched with the next-to-next-to-leading logarithmic
resummed calculation for the back-to-back limit. Using these predictions and state-of-the-art
Monte Carlo tools to model hadronization corrections, we perform an extraction of the strong
coupling from available data sets. We also show next-to-next-to-leading order results for soft-
drop thrust, an observable specifically constructed to have reduced hadronization corrections. We
study the impact of the soft drop on the convergence of the perturbative prediction and find that
generally grooming improves perturbative stability. This improved stability, together with the
reduced sensitivity to non-perturbative corrections makes soft-drop thrust a promising observable
for precision measurements of the strong coupling at lepton colliders.
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Introduction

Accurate measurements of event shape distributions in e+e− annihilation continue to be one
of the most precise tools for extracting the strong coupling αs value from data [1, 2]. Such de-
terminations are typically based on the comparison of differential distributions with perturbative
predictions supplemented with hadronization corrections derived either from analytic models or
Monte Carlo tools. As new data for e+e− annihilation are not foreseen in the near future, progress
in such measurements relies solely on improved theoretical understanding of the e+e−→ hadrons
process.

When discussing the accuracy of theoretical predictions for event shape distributions, two very
different sources of uncertainty present themselves. The first of these is simply the uncertainty
coming from terms that are not evaluated exactly in perturbation theory. These can be higher-order
terms in the coupling that are simply neglected in a fixed-order calculation, or subleading logarith-
mic terms that are not controlled in an all-order resummation. A second source of uncertainty is
that associated with the description of the parton to hadron transition.

These two types of uncertainties have a rather different nature and so their reduction must be
addressed in different ways. Clearly, uncertainties associated to the perturbative description of an
observable may be reduced, at least in principle, by increasing the perturbative and/or logarithmic
order at which the predictions are computed. These days, state-of-the-art computations include
exact fixed-order corrections at next-to-next-to-leading order (NNLO) accuracy for three-jet event
shapes [3, 4, 5], as well as next-to-next-to-leading logarithmic (NNLL) (see e.g., Ref. [6] and
references therein) and even next-to-next-to-next-to-leading logarithmic (N3LL) resummation [7,
8, 9] in the two-jet limit. However, it is less obvious how non-perturbative uncertainties could
be similarly reduced. In this respect, one idea is to investigate observables that are less sensitive
to hadronization corrections. In particular, borrowing ideas from jet grooming, new event shape
observables can be defined for which hadronization corrections are much reduced as compared to
traditional ones [10].

In this contribution we first present an extraction of the strong coupling αs from the energy-
energy correlation of particles in e+e− collisions, highlighting the role that higher-order perturba-
tive corrections play in reducing the uncertainty of the measurement. Then, we investigate soft-
drop thrust, an observable constructed to mitigate the impact of non-perturbative corrections. In
particular, we point out that in addition to decreased hadronization corrections, this new observ-
able also exhibits an increased perturbative stability, making it an appealing candidate for a precise
determination of the strong coupling.

An old observable: energy-energy correlation

Energy-energy correlation (EEC) was one of the first infrared- and collinear-safe event shapes
to be considered in the literature [11]. It is defined as the normalized energy-weighted distribution
with respect to angles χ between the three-momenta of particles in an event,

1
σt

dΣ(χ)

dcos χ
=

1
σt

∫
∑
i, j

EiE j

Q2 dσe+e−→i j+X δ (cos χ− cosθi j) , (1)
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where Ei and E j are particle energies, Q is the total center-of-mass energy, θi j is the angle between
the three-momenta of particles i and j1 and σt is the total hadronic cross section.

The fixed-order prediction for EEC in perturbative QCD has been known numerically at NLO
accuracy for some time (see e.g., Ref. [14] and references therein), while the NNLO correction
has been computed more recently [15] using the CoLoRFulNNLO method [5, 16, 17]. At the
renormalization scale µ the fixed-order result can be written as[

1
σt

dΣ(χ,µ)

dcos χ

]
(f.o.)

=
αs(µ)

2π

dĀ(χ,µ)
dcos χ

+

(
αs(µ)

2π

)2 dB̄(χ,µ)
dcos χ

+

(
αs(µ)

2π

)3 dC̄(χ,µ)

dcos χ
+O(α4

s ) ,

(2)
where the perturbative coefficients at LO, NLO and NNLO, Ā, B̄ and C̄, have been normalized to
the total hadronic cross section. On the left panel of Fig. 1 we show the physical predictions for
EEC in fixed-order perturbation theory up to NNLO accuracy together with data measured by the
OPAL collaboration [18]. The bands in the plot represent the effect of varying the renormalization
scale by a factor of two around its central value of µ = Q.
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Figure 1: Fixed-order (left) and resummed (right) predictions for EEC.

Clearly the inclusion of higher-order corrections improves the agreement of the prediction and
the data, although there are pronounced differences around the forward (χ→ 0◦) and back-to-back
(χ→ 180◦) regions, where in fact the fixed-order predictions diverge. This is due to the presence of
large logarithmic corrections of infrared origin in these phase space regions that must be resummed
to all orders to obtain a physically valid description of EEC around the endpoints of the distribution.
The resummation of large logarithms of

y = cos2 χ

2
(3)

in the back-to-back region around χ = 180◦ has been known for some time at NNLL accuracy [12].
The resummed prediction can be written as[

1
σt

dΣ(χ,µ)

dcos χ

]
(res.)

=
Q2

8
H(αs(µ))

∫
∞

0
dbJ0(bQ

√
y)S(Q,b) , (4)

1Refs. [12, 13] use the opposite χ = 180◦−θi j convention such that the back-to-back region corresponds to χ→ 0.
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where the logarithmically enhanced terms are collected in the Sudakov form factor

S(Q,b) = exp

{
−
∫ Q2

b2
0/b2

dq2

q2

[
A(αs(q2)) ln

Q2

q2 +B(αs(q2))

]}
. (5)

The functions A, B and H are free of logarithmic corrections and can be computed in perturbation
theory. Their explicit expressions can be found in Refs. [12, 13]. On the right panel of Fig. 1
we present purely resummed predictions in the back-to-back limit for EEC up to NNLL accuracy
together with OPAL data. The resummed calculation is finite and captures the trends of the data
correctly for angles χ close to 180◦, but does not do a good job of describing the measurement
away from the back-to-back region.

From Fig. 1 it is evident that data is best described by fixed-order or resummed results over
different angular ranges. In particular, fixed-order predictions are reliable for moderate to large
y (αs ln2 y� 1), while the resummed calculation applies to small y (y� 1). Predictions that are
valid over a wide kinematical range can be obtained by combining the fixed-order and resummed
results. The matched predictions are obtained in the log-R scheme. The details of this procedure
are presented in Ref. [13]. Note that the description of the EEC distribution over the full angular
range would require resummation also in the forward limit.

In order to extract the strong coupling αs from measurements of EEC, the theoretical predic-
tion described above must be combined with hadronization corrections. We modeled these non-
perturbative effects using the state-of-the-art particle-level Monte Carlo generators SHERPA [19]
and Herwig7 [20]. The exact Monte Carlo generation setups employed are discussed in Ref. [21]
as well as by the contribution of A. Verbytskyi in these proceedings. Hadronization corrections
were derived on a bin-by-bin basis as ratios of the EEC distribution at hadron and parton level in
the simulated samples.

The perturbative results, corrected for hadronization effects as described above, were con-
fronted with available data sets from the SLD, OPAL, L3, DELPHI, TOPAZ, TASSO, PLUTO,
JADE, CELLO, MARKII, and MAC experiments. The details of data selection are described
in Ref. [21]. The optimal value of αs was determined by a chi-squared minimization procedure
employing the MINUIT2 program [22], see Ref. [21] and A. Verbytskyi’s contribution in these
proceedings for details. In Fig. 2 we show representative results of fits to data obtained with theo-
retical predictions at NNLO+NNLL as well as NLO+NNLL accuracy. Our best fit value for αs at
NNLO+NNLL accuracy is

αs(mZ) = 0.11750±0.00287(comb.) , (6)

in agreement with the world average as of 2017 [23]. The quoted combined error takes into account
uncertainties associated with the variation of the renormalization and resummation scales in the
perturbative calculation, the choice of hadronization model employed (Lund string fragmentation
or cluster model), as well as fit uncertainty (obtained with the χ2 + 1 criterion as implemented
in MINUIT2). A detailed description of the estimation of the various uncertainties is given in
Ref. [21] (see also A. Verbytskyi’s contribution in these proceedings).

In order to highlight the impact of NNLO corrections on the determination, the fit was repeated
with theoretical predictions computed at NLO+NNLL accuracy. The corresponding best fit value

3
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Figure 2: Selected results of fits to data at NNLO+NNLL and NLO+NNLL accuracy.

for αs is αs(mZ) = 0.12200±0.00535(comb.). We see that the inclusion of the NNLO correction
has a moderate but non-negligible effect on the extracted value of αs, while the uncertainty of the
determination is reduced substantially, by a factor of two.

New observables: soft-drop event shapes

We now turn to the issue of how the uncertainty associated with the estimation of hadronization
corrections might be mitigated in measurements of αs. As mentioned in the introduction, one
possible approach is to construct observables with reduced sensitivity to non-perturbative effects.
The idea is simple: if the overall size of the hadronization correction is small, then even a sizable
relative uncertainty on this contribution will correspond to a small overall uncertainty on αs. Thus
the limited precision of the hadronization correction becomes less of an issue.

Soft-drop event shapes constitute a generic class of observables that are constructed to have
reduced hadronization uncertainties. Indeed, soft drop is a kind of grooming procedure, designed to
remove soft and wide-angle radiation from jets that are defined in an event. For Cambridge–Aachen
jets of radius R, soft-drop grooming is defined as follows [24]:

1. Undo the last step of clustering for jet J and split it into two subjets.

2. Check if the subjets pass the soft-drop condition, which for e+e− collisions reads

min{Ei,E j}
Ei +E j

> zcut

(
1− cosθi j

1− cosR

)β/2

or
min{Ei,E j}

Ei +E j
> zcut (1− cosθi j)

β/2 (7)

for jets of radius R or hemisphere jets, respectively.

3. If the splitting fails this condition, the softer subjet is discarded and the groomer continues
to the next step in the clustering.

4



P
o
S
(
A
L
P
H
A
S
2
0
1
9
)
0
0
2

Old and new observables for αs from e+e−→ hadrons Gábor Somogyi

4. If the splitting passes, the procedure ends and J is the soft-drop jet.

The grooming parameter zcut sets an energy threshold for discarding soft radiation (zcut→ 0 corre-
sponds to no grooming), while β controls how strongly wide-angle emissions are rejected (β → ∞

corresponds to no grooming).
With the soft-drop procedure, one can define event shapes by first performing a special kind of

grooming of the event, and then computing the value of the event shape from the groomed event.
As an example, consider soft-drop thrust (more specifically T ′SD), which was defined for e+e−

collisions in Ref. [10]:

(a) Compute the thrust axis,~nT , and divide the event into two hemispheres.

(b) Apply soft-drop grooming to each hemisphere.

(c’) The set of particles left in the two hemispheres after the soft-drop constitute the soft-drop
hemispheres H L

SD and H R
SD, on which the soft-drop thrust T ′SD is defined as

T ′SD =
∑i∈H L

SD
|~nL ·~pi|

∑i∈ESD |~pi|
+

∑i∈H R
SD
|~nR ·~pi|

∑i∈ESD |~pi|
, (8)

where ~nL and ~nR are the jet axes of the original left and right hemispheres and ESD is the
soft-drop event, ESD = H L

SD∪H R
SD.

Hadronization corrections to soft-drop thrust were studied in Ref. [10]. There it was demonstrated
that non-perturbative corrections are indeed much reduced over a wide range of the event shape,
with the precise magnitude of the reduction depending on the choice of grooming parameters zcut

and β . This property makes soft-drop event shapes attractive candidates for extractions of αs,
however, it should be noted that grooming also reduces the cross section, hence the soft-drop
parameters must be chosen carefully to avoid the loss of too much data.

Furthermore, the precision of potential αs measurements based on soft-drop event shapes is
also influenced by the perturbative stability of the observables. Hence, it is important to investi-
gate how grooming affects the convergence of perturbative predictions. In order to assess this, in
Ref. [25] we computed the QCD corrections to soft-drop thrust (T ′SD), hemisphere jet mass (e(2)2 ),
and narrow jet mass (ρ). (The precise definitions of e(2)2 and ρ are given in Ref. [10].) We quantify
the convergence of the perturbative results with K-factors, defined as the ratios of distributions at
subsequent orders in perturbation theory,

KNLO(µ) =
dσNLO(µ)

dO

/
dσLO(Q)

dO
and KNNLO(µ) =

dσNNLO(µ)

dO

/
dσNLO(Q)

dO
. (9)

Clearly the less the K-factors deviate from unity, the better the convergence of the perturbative
prediction.

We present our results for soft-drop thrust in Fig. 3, where the left panel shows the distribution
of τ ′SD ≡ 1−T ′SD at LO, NLO, and NNLO accuracy for grooming parameters zcut = 0.1 and β = 0.
The bands represent the effects of varying the renormalization scale by a factor of two around the
central value µ = Q. The dependence of the K-factors on grooming parameters is studied on the
right panel of Fig. 3, where KNLO(µ) and KNNLO(µ) are plotted in dashed blue and solid red. We
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Figure 3: The soft-drop thrust distribution at LO, NLO and NNLO accuracy with zcut = 0.1 and β = 0 (left),
and K-factors as defined in Eq. (9) for different choices of grooming parameters (right).

observe that stronger grooming (larger zcut and smaller β ) leads to K-factors closer to unity and
hence a more stable perturbative prediction. This conclusion is of course not unexpected. For
τ ′SD & 10−2, i.e., in the range where the bulk of the cross section is generated, we see that the
perturbative result is the most stable for zcut = 0.1 and β = 0.

Summary

In this contribution we examined potential ways of increasing the precision of αs measure-
ments from e+e− annihilation into hadrons. On the one hand, we stressed the important role that
higher-order perturbative corrections play in reducing the uncertainty of the determination. We
highlighted this by presenting an extraction of αs from measurements of energy-energy correla-
tion, based on theoretical predictions with NNLO+NNLL accuracy and hadronization corrections
derived using modern Monte Carlo tools. We find that the inclusion of NNLO corrections has a
dramatic effect on the uncertainty of the measurement, which is reduced by a factor of two as com-
pared to the result at only NLO+NNLL accuracy. Our analysis provides a determination of αs(mZ)

with the highest numerical and theoretical precision obtained from this observable to date,

αs(mZ) = 0.11750±0.00287(comb.) .

On the other hand, we pointed out that a possible strategy for reducing uncertainties in mea-
surements of αs associated with the modeling of hadronization corrections is to employ observables
for which these corrections are small. In particular, we examined soft-drop event shapes, observ-
ables specifically tailored so as to show less sensitivity to non-perturbative effects. Through the
example of soft-drop thrust, we demonstrated that in addition to reducing hadronization correc-
tions, soft-drop grooming also enhances the perturbative stability of the theoretical predictions.
These features make soft-drop event shapes promising candidates for precision measurements of
the strong coupling at lepton colliders.
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